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Biometric verification (1/2)

A biometric system uses:
I Twomeasurements X and X′,
I A similarity S that quantifies the likeness of (X, X′),
I A threshold t that separates positive and negative pairs.

Aim: S(X, X′) > t is a good indicator of Z = +1 with:

Z =

{
+1 if (X, X′) from the same person,
−1 otherwise.

Two types of errors:

TPRS(t) := P{S(X, X′) > t | Z = +1},
FPRS(t) := P{S(X, X′) > t | Z = −1}.

The set {(FPRS(t), TPRS(t)) | t ∈ R} is known as the ROC curve.
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Biometric verification (2/2)

Figure: Extract of the NIST Face Recognition Vendor Test (FRVT) report.
Several criterions measure ROC accuracy:
I Area Under the ROC Curve (AUC),
I Pointwise ROC optimization (pROC) see [Vogel et al., 2018],
I Local AUC (LocAUC): see [Clémençon and Vayatis, 2007].

Remarks:
· AUC does not focuses on best instances,
· pROC and LocAUC can have inadapted optimums. 4



Our contribution

The posterior probability η(x, x′) = P{Z = +1|(X, X′) = (x, x′)},
is the optimal similarity in a ranking and ROC sense.

Contributions:
I Procedure for building a similarity that approximates η.
I Guarantees in sup norm in the ROC space.
I Implementations in specific cases.

Plan:
1. Present TreeRank for bipartite ranking, see
[Clemencon and Vayatis, 2009].

2. Adapt it to similarity learning.
3. Draw on U-statistic theory to prove new results.
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Bipartite ranking
Standard binary classification framework:
I let a random variable (X, Y) ∈ X × {−1,+1},
I n i.i.d. copiesDn = {(Xi, Yi)}ni=1 of (X, Y),
I the distribution of (X, Y) is summarized by (µ, η)where:

∀x ∈ X , η(x) = P{Y = +1|X = x}, µ(C) = P{X ∈ C}.

I or by (p, α, β), where p = P{Y = +1} = 1− q,
α(C) = P{X ∈ C|Y = −1} and β(C) = P{X ∈ C|Y = +1},

α the false positive rate (FPR), β the true positive rate (TPR).

Objective: Rank items inX by decreasing η usingDn.
The ranking is derived from a scorer s : X → R that ranksX withR.
Optimal scorers S∗ are increasing transforms T ◦ η of η.
A scorer s∗ is optimal i.f.f. ∃w ∈ L1,w ≥ 0 and V cont. r.v. in (0, 1):

∀x ∈ X , s∗(x) = inf
z∈X

s∗(z) + E [w(V) · I{η(x) > V}] .
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An approach to bipartite ranking (1/2)
Idea: Using estimated super-level sets of η: {x ∈ X |η(x) > t}t∈R,
build an accurate scorer.

Optimal scorers write as: s∗(x) = C + E [w(V) · I{η(x) > V}],
which can be approximated by a piecewise constant function,

sN(x) =
N∑
j=1

I{x ∈ Rj},

with {Rj}N1=1 increasing (Rj ⊂ Rj+1) family of sets.

The ROC curve of sN is the broken line connecting the dots:

{(α(Rj), β(Rj))}0≤j≤N.with R0 = ∅. (1)

Hence, if the Rj’s are the level sets of η,
eq. (1) could be a piecewise linear approximation of the ROC curve.
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An approach to bipartite ranking (2/2)

From the Neymann-Pearson fundamental lemma, the optimal
solution of pROC at level α, i.e.

max
C
β(C) s.t. α(C) ≤ α, (2)

is {x ∈ X |η(x) > γ}where γ is the (1− α)-quantile of η(X)|Y = −1.

[Clémençon and Vayatis, 2009] solves eq. (2) to build good scorers.

Theweighted classif loss: Lc(C) = cp · β(C)− (1− c)q · α(C),
has for optimal solution C = {x ∈ X |η(x) > 1− c}.

TreeRank [Clemencon and Vayatis, 2009] exploits that idea.

TreeRank splitsX recursively to retrieve the super-level sets of η,
withweighted classif. optimized on a family C of subsets ofX .
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Visual example of TreeRank

For C being coordinate splits,X = [0, 1]2 and η(x) = (4x1 + 2x2)/7:

Remark: Elements of C are very di�erent from super-level sets of η.
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TreeRank algorithm
Input. Maximal depth D ≥ 1 of the tree, C,Dn.

1. (INIT.) Set C0 = X , αd,0 = βd,0 = 0 and αd,2d = βd,2d = 1 for all d ≥ 0.

2. (ITERATIONS.) For d = 0, . . . , D− 1 and k = 0, . . . , 2d − 1:

2.1 (OPTIMIZATION STEP.) Set the entropic measure:

Λ̂d,k+1(C) = (αd,k+1 − αd,k) · β̂(C)− (βd,k+1 − βd,k)α̂(C).

Find Cd+1,2k ∈ C subset of Cd,k that maximizes Λ̂d,k+1.
2.2 (UPDATE.) Set αd+1,2k+1, βd+1,2k+1, αd+1,2k+2 and βd+1,2k+2.

3. (OUTPUT.) A�er D iterations, get the piecewise constant score function:

sD(x) =
2D−1∑
k=0

(2D − k)I{x ∈ CD,k},

· For pruning: [Clemencon and Vayatis, 2009].
· For bagging: [Clémençon et al., 2013].
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Guarantees

Assumptions: Let≺ denote absolute continuity, 1

1. α and β are equivalent (i.e. α ≺ β and β ≺ α), dβdα is bounded.
2. η(X) ≺ λwith λ the Lebesguemeasure.
3. C is of VC-dimension V ,
4. contains all level sets of η and is intersection-stable (C ∩ C′ ∈ C),

Theorem: Under those, given a tree of depth D = Dn ∼ log(
√
n),

∀δ > 0, ∃λ > 0 such that, with probability≥ 1− δ, ∀n ∈ N,∥∥ROCsDn − ROCs∗∥∥∞ ≤ exp(−λ
√

log(n)).

λ depends on V , δ and universal constants.

1µ ≺ ν i.f.f. ∃h : X → R+, µ = h · ν.
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Sketch of proof ([Clemencon and Vayatis, 2009])
Step 1: Bound the ‖ · ‖∞
With β∗D,k, α

∗
D,k params for the adaptative broken line est. of ROCs∗ ,

when t ∈ [α∗D,k0 , αD,k0+1] ∩ [α(RD,k−1), α(RD,k)],

ROCs∗(t) ≤ β∗D,k0 + ROC′s∗(0)× (t − α∗D,k0),
ROCsD(t) ≥ β(RD,k)− ROC′s∗(0)× (t − α(RD,k)).

It implies the following bound on ‖ROCs∗ − ROCsD‖∞:

max
1≤k≤2D−1

β∗D,k − β(RD,k−1) + ROC′s∗(0)
[
α∗D,k − α(RD,k−1)

]
. (3)

Step 2: Prove by recurrence a bound of eq. (3)
Under assumptions, ∃K s.t. ∀δ > 0, with probability 1− δ, ∀d, k:

|α∗d,k − α(Rd,k−1)|+ |β∗d,k − β(Rd,k−1)| ≤ KdB(d + 1, n, δ),

where B(d + 1, n, δ) = O
(
V1/2d+log(1/δ)1/2d

n1/2d

)
.

Which is proven using standard VC inequalities.
13



Outline

Introduction

TreeRank for bipartite ranking

Similarity TreeRank

14



Similarity ranking

We chose the standard classification framework:
I let a random variable (X, Y) ∈ X × {1, . . . ,K},
I the distribution of (X, Y) is summarized by (µ, (η1, . . . , ηK)):

∀x ∈ X, k ∈ {1, . . . ,K}, ηk(x) = P{Y = k|X = x}.
I the optimal similarity is η(x, x′) =

∑K
k=1 ηk(x)ηk(x′),

i.e. the probability to be in the same class.

Objective: Rank pairs inX × X by decreasing η usingDn.

The ranking is derived from a similarity s : X × X → R.

Given two i.i.d. pairs (X, Y) and (X′, Y ′), set Z = 2I{Y = Y ′} − 1,
one can form n(n− 1)/2 obs. of the form ((X, X′), Z) fromDn.

Idea: Run TreeRank on non-i.i.d. data of the form ((X, X′), Z).
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TreeRank for similarity ranking
TreeRank on data of the form ((X, X′), Z) gives a similarity s.

Similarities satisfiesmore constraints than scorers.

Symmetricity: For s to be symmetric, it su�ices that C is symmetric.
→ Use symmetric proposal regions,
→ Learn on data of the form ((X + X′, |X − X′|), Z).

Lemma: Let s : X 2 → R,
s is symmetric ⇔ ∃ s0 : X 2 → R, s(x, x′) = s0(x + x′, |x − x′|).

Identity:
One expects s(x, x) ≥ s(x, z) for all x, z ∈ X .
It is not satisfied by:

η(x, x′) =
K∑
k=1

ηk(x)ηk(x′).
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Extension of the results
Same type guarantees hold for similarity TreeRank.

Estimates of α, β are ratios of U-statistics (means of pairs), e.g.:

α̂(C) =
1
n−

∑
i<j

I{Zi,j = −1, (Xi, Xj) ∈ C},

and standard VC inequalities do not hold.

Using the fact that a simple U-statistic Un(h) can be rewritten as:

Un(h) :=
2

n(n− 1)
∑
i<j

h(Xi, Xj) =
1
n!

∑
σ∈Sn

1
bn/2c

bn/2c∑
i=1

h(Xσ(i), Xbn/2c+i),

which is the first Hoe�ding decomposition, Jensen’s inequality
implies new VC inequalities, see [Vogel et al., 2018].

Bagging TreeRankmodels learned on incomplete U-statsworks,
see [Clémençon et al., 2016].
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Conclusion

In a nutshell:
TreeRank describes a general approach to the ranking problem.

Performance of similarity learning algorithms is evaluated by
ranking criterions in important applications.

TreeRank can be adapted for similarity learning,
and theoretical results extended using results on U-statistics,
see [Clémençon et al., 2016].

TreeRank’s competitiveness depends on the expressivity of C.

Future work:
Explore the idea of using neural networks to represent C.
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