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Large scale distributed data processing

Very large datasets are common nowadays in ML.
→ Distribute the data in partitions over several machines.

Cluster computing frameworks:
· Abstract network and communication aspects of distribution.
· Restrict the types of operations e�iciently achieved.
E.g. Apache Spark [Meng et al., 2016], Petuum [Xing et al., 2015], . . .

Most ML techniques optimize standardmeans L̂ =
∑

i `(xi)/n,
Those are separable across partitions.
→ One can e�iciently estimate those.

Very common statistics - e.g. U-statistics - are not.
→ Estimation can be slow or inaccurate.
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Our contribution

Problem:
When a statistic is not separable across partitions,
frameworks may be unsuited to computing accurate estimators.

Contribution: Quantified analysis for U-statistics,
1. E�icient estimators of U-statistics in a distributed setting.
2. The analysis of their accuracy-vs-time tradeo�.
3. Learning experiment with those as gradient estimators.

Plan:
I Properties of U-statistics, see [Hoe�ding, 1948],
I Contributions 1-3.
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U-statistics: definition and examples

Introduce K independent i.i.d. samplesDk = {X(k)1 , . . . , X(k)nk } ⊂ Xk,
and the kernel h : X d1

1 × · · · × X dK
K → Rwith h ∈ L2.

The generalized U-statistic of degrees (d1, . . . , dK) is defined as:

Un(h) =
1∏K

k=1
(nk
dk

)
∑

I1

. . .
∑

IK

h(X(1)I1 , X
(2)
I2 , . . . , X

(K)
IK ),

where
∑

Ik is the sum over all
(nk
dk

)
subsets of dk elements ofDk.

Examples:
I a sample variance h(x1, x2) = (x1 − x2)2,
I Kendall’s tau h((x1, y1), (x2, y2)) = I{(x1 − x2) · (y1 − y2) > 0},
I clustering,metric learning and ranking criterions.

Here: study quantitatively a common case in a distributed setting.
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Two-sample U-statistics
Introduce, withm� n:
I the abundant positive i.i.d. sampleDn = {X1, . . . , Xn} ⊂ X ,
I the scarce negative i.i.d. sampleQm = {Z1, . . . , Zm} ⊂ Z ,
I a kernel h : X × Z 7→ R.

Objective: Estimate U(h) = E[h(X1, Z1)].
With n = (n,m), the U-statistic Un, where:

Un :=
1
nm

n∑

i=1

m∑

j=1

h(Xi, Zj),

is the unbiased estimator of U(h)with lowest variance.

Un is an average of nm elements→What if n = 109,m = 103?
One answer is incomplete U-statistics [Clémençon et al., 2016],

ŨB :=
1
B

∑

(i,j)∈DB

h(Xi, Zj),

whereDB is a set of B elements sampled WR in {(i, j)}i∈JnK,j∈JmK.
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Properties of two-sample U-statistics
With theHajèk projections h1(x) = E[h(x, Z1)], h2(z) = E[h(X1, z)],

and h0(x, z) = h(x, z)− h1(x)− h2(z) + U(h),

then Un = T1 + T2 +W0 − Uwith

T1 =
1
n

n∑

i=1

h1(Xi) and T2 =
1
m

m∑

j=1

h2(Zj) andW0 =
1
nm

n∑

i=1

m∑

j=1

h0(Xi, Zj),

which is called the second Hoe�ding decomposition.

A U-statistic Un is called degeneratewhen h1 = U and h2 = U a.s..

Introducing σ21 = Var(h1(X)), σ22 = Var(h2(Z)), σ20 = Var(h0(X1, Z1)):

Var(Un) =
σ21
n

+
σ22
m

+
σ20
nm

.

Examples with X1, Z1 ∼ U [−1, 1]:
h(x, z) = x + z gives σ20 = 0. | h(x, z) = x · z gives σ21 , σ22 = 0.
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Distributed data
We distribute the data on Nworkers.

𝑍𝑗

𝑍1

𝑍𝑚

…
…

𝑋𝑖𝑋1 𝑋𝑛……

Require
network 
communication.

Pair (𝑿𝒊, 𝒁𝒋)

One can distribute the instances:
I with SWOR (SWR): sampling without (with) replacement,
I proportionally: each cluster contains n/N instances fromDn,
andm/M fromQm.

Here: Focus on proportional SWOR (see paper for others).
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Naive estimators (1/2)

Averaging full U-statistics from each cluster gives Un,N.

𝑼𝒏
(𝟏)

𝑼𝒏
(𝟐)

𝑼𝒏
(𝟑)

𝑼𝒏
(𝟒)

𝑼𝒏,𝑵

mean

𝑍𝑗

𝑍1

𝑍𝑚

…
…

𝑋𝑖𝑋1 𝑋𝑛……

complete U-statistics

Proposed statistics: Un,N
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Naive estimators (2/2)

Averaging B pairs SWR from each cluster gives Ũn,N,B.

𝑼𝒏,𝑩
(𝟏)

𝑼𝒏,𝑩
(𝟐)

𝑼𝒏,𝑩
(𝟑)

𝑼𝒏,𝑩
(𝟒)

mean

𝑍𝑗

𝑍1

𝑍𝑚

…
…

𝑋𝑖𝑋1 𝑋𝑛……

incomplete U-statistics

෩𝑼𝒏,𝑵,𝑩

Proposed statistics: Un,N, Ũn,N,B,
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Estimators with redistribution (1/2)

Averaging Un,N on T redistributions of the data gives Ûn,N,T .

𝑼𝒏
(𝟏)

𝑼𝒏
(𝟐)

𝑼𝒏
(𝟑)

𝑼𝒏
(𝟒)

mean

𝑍𝜋𝑡(𝑗)

𝑍𝜋𝑡(1)

𝑍𝜋𝑡(𝑚)

…
…

𝑋𝜎𝑡(𝑖)𝑋𝜎𝑡(1) 𝑋𝜎𝑡 𝑛……

complete U-statistics

𝑼𝒏,𝑵
(𝒕)

mean 
over 𝑡

𝑼𝒏,𝑵,𝑻

Proposed estimators: Un,N, Ũn,N,B, Ûn,N,T .
With σt, πt random permutations at time t.
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Estimators with redistribution (2/2)

Averaging Ũn,N,B on T redistributions of the data gives Ũn,N,B,T .

𝑼𝒏,𝑩
(𝟏)

𝑼𝒏,𝑩
(𝟐)

𝑼𝒏,𝑩
(𝟑)

𝑼𝒏,𝑩
(𝟒)

mean

incomplete U-statistics

𝑍𝜋𝑡(𝑗)

𝑍𝜋𝑡(1)

𝑍𝜋𝑡(𝑚)

…
…

𝑋𝜎𝑡(𝑖)𝑋𝜎𝑡(1) 𝑋𝜎𝑡 𝑛……

෩𝑼𝒏,𝑵,𝑩
(𝒕)

mean 
over 𝑡

෩𝑼𝒏,𝑵,𝑩,𝑻

Proposed estimators: Un,N, Ũn,N,B, Ûn,N,T , and Ũn,N,B,T .
With σt, πt random permutations at time t.

All of the estimators are unbiased.
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Variance expressions
We have: Variances in closed form.

For the naive estimators:

Var(Un,N) = Var(Un) + (N− 1) σ
2
0

nm
,

Var(Ũn,N,B) =
(
1− 1

B

)
Var(Un,N) +

σ2

NB
.

→ Term in Nσ20/nm.

For the estimators with redistribution:

Var(Ûn,N,T) = Var(Un) + (N− 1) σ
2
0

nmT
,

Var(Ũn,N,B,T) = Var(Ûn,N,T)−
1
TB
Var(Un,N) +

σ2

NTB
.

→ Term in Nσ20/Tnm.
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Illustrations of the variances

Conclusions:
· Redistribution is useful when σ22 � σ20,
· For any same# of pairs, Ũn,N,B,T is worse than Ûn,N,T .
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Optimize the convexified AUC

Objective: optimize the AUC using a its convex upper-bound:

Un(hAUC) :=
1
nm

∑

i,j

I{w>(Xi − Zj) > 0},

≤ 1
nm

∑

i,j

[
1+ w>(Xi − Zj)

]
+
=: Un(hconv).

Optimizer: Momentum BGDwith LR 10−2, mom. 0.9 for 5× 103 iter.
Loss: Un,N,B(hconv) + λ‖w‖22, where we redistribute each nr iter.
Parameters: N = 100, B = 500, λ = 0.01, nr ∈ {1, 5, 25,+∞}.
Dataset: Shuttle (outlier dataset), n = 45, 000,m = 3, 500,
20% as test set, train monitored on a fixed set of 450K pairs,
see [Rayana, 2016].

18



Results
0 250 500 750

0.2

0.4

0.6

0.8

1.0

L
os

s

×10−1

0.5

1.0

1.5

2.0

1-
A

U
C

×10−2nr = 10, 000

0 250 500 750
iter

0.2

0.4

0.6

0.8

1.0

L
os

s

×10−1

0.5

1.0

1.5

2.0

1-
A

U
C

×10−2nr = 5

Loss

95% CI test

train

1-AUC

95% CI test

train

· Not redistributing→ end performance very noisy
· Redistributing→ better performance (with high. prob.)
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MOTIVATION
Frameworks for cluster computing:
· ease the deployment of distributed algorithms,
· add restrictions on the type of operations available,
· behave well for standard averages.

The statistical learning literature:
· proves guarantees for statistical methods,
· generally ignores cluster-computing restrictions,
· handles computational aspects in a stylized manner,

U -statistics:
· are averages over all tuples of data points.
· arise in many practical problems.
· are well studied in a centralized setting,

In a distributed setting,
U -statistics need lots of network communication.

CONTRIBUTIONS
Methods and analyses in a distributed setting for:
· statistical estimation of U -statistics,
· learning with U -statistics,
with good trade-off between accuracy & scalability.

Illustrative experiments.

PRELIMINARIES
Define two independent i.i.d. samples, with m� n:

Dn = {Xk}nk=1 ⊂ X and Qm = {Zl}ml=1 ⊂ Z.

Given h : X × Z → R, we estimate U(h), where

U(h) = E[h(X1, Z1)].

A two-sample U -statistic writes:

Un(h) =
1

nm

n∑

k=1

m∑

l=1

h(Xk, Zl), (1)

and is a MVUE of U(h) that sums nm terms.

An incomplete two-sample U -statistic writes:

ŨB(H) =
1

B

∑

k,l∈DB

h(Xk, Zl), (2)

with DB a set of B pairs selected by uniform SWR.

In [1], ŨB(H) is argued to be a statistically efficient
approximation of Un(h).

In a distributed setting, with N workers, denote by:
· RX

i the instances of Dn held by worker i,
· RZ

i the instances of Qm held by worker i,
and ni = |RX

i | and mi = |RZ
i | for all 1 ≤ i ≤ N .

The full estimator on clusterRi writes:

URi(h) =
1

nimi

∑

k∈RX
i

∑

l∈RZ
i

h(Xk, Zl). (3)

The incomplete estimator on clusterRi writes:

UB,Ri
(h) =

1

B

∑

k,l∈Ri,B

h(Xk, Zl), (4)

withRi,B sampled inRX
i ×RZ

i as DB in eq. (2).

Different strategies exist for distributing Dn,Qm,
here we took proportional (ni = nj ,∀i 6= j) SWOR.

CANDIDATE ESTIMATORS
Naive estimators: Use only intra-cluster pairs.
· Average full U -statistics URi

for each cluster:

Un,N =
1

N

N∑

i=1

URi .

· Average incomplete U -stats UB,Ri
for each cluster:

Ũn,N,B =
1

N

N∑

i=1

ŨB,Ri .

Proposed estimators: based on redistributing data.
· Average T estimators Un,N on T redistributions:

Ûn,N,T =
1

T

T∑

t=1

U t
n,N .

· Average Ũn,N,B’s on T redistributions:

Ũn,N,B,T =
1

T

T∑

t=1

Ũ t
n,N,B .

ANALYSIS
All estimators are unbiased, we study their variance.

Hoeffding’s second decomposition [2] writes:

h(x, z) = h0(x, z) + h1(x) + h2(z)− U(h),

with h1(x) = E[h(x, Z1)], h2(z) = E[h(X1, z)],

and h0(x, z) = h(x, z)− h1(x)− h2(z) + U(h).

Introduce σ2
1 = Var(h1(X1)), σ2

2 = Var(h2(Z1)),
and σ2

0 = Var(h0(X1, Z1)), it implies:

Var(Un(h)) =
σ2
1

n
+
σ2
2

m
+

σ2
0

nm
.

The naive estimators’ variances grow in N :

Var(Un,N (h)) = Var(Un(h)) + (N − 1)
σ2
0

nm
,

Var(Ũn,N,B(h)) =

(
1− 1

B

)
Var(Un,N (h)) +

σ2

NB
,

while the proposed estimators’ grow in N/T :

Var(Ûn,N,T (h)) = Var(Un(h)) + (N − 1)
σ2
0

nmT
,

Var(Ũn,N,B,T (h)) = Var(Ûn,N,T (h)) +
σ2

NTB

− 1

TB
Var(Un,N (h)).

The variance of gradient estimations impacts SGD.
One idea is to redistribute data every nr iterations.

VARIANCE-TIME TRADEOFF
For n = 100, 000, m = 200 and N = 100, we plot the variance as a function of the number of evaluated pairs.
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EXPERIMENTS
The shuttle dataset is classic in outlier detection [3].
It verifies n ≈ 45, 000 and m ≈ 3, 500.

We optimize its Area Under the ROC Curve (AUC),
by minimizing the U -statistic with kernel:

hw,b(x, z) = max(0, 1 + sw,b(x)− sw,b(z)),

where sw,b(x) = w>x+ b, with weight decay on w.

A full U -stat on 20% of the data tracks our test AUC.
The rest of the data is split over N = 100 workers.
The train AUC is tracked on a fixed sample of pairs.

We use GD with learning rate 0.01, momentum 0.9
and gradient estimates akin to Ũn,N,B withB = 100.

Lines below are medians at each iter over 100 runs.
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