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Introduction



Large scale distributed data processing

Very large datasets are common nowadays in ML.
— Distribute the data in partitions over several machines. A

APACHE

Cluster computing frameworks: SPQT K
- Abstract network and communication aspects of distribution. @
- Restrict the types of operations efficiently achieved. @

Most ML techniques optimize standard means [ = >, /(x;)/n,
Those are separable across partitions.
— One can efficiently estimate those.

Very common statistics - e.g. U-statistics - are not.
— Estimation can be slow or inaccurate.



Our contribution

Problem:
When a statistic is not separable across partitions,
frameworks may be unsuited to computing accurate estimators.

Contribution: Quantified analysis for U-statistics,
1. Efficient estimators of U-statistics in a distributed setting.
2. The analysis of their accuracy-vs-time tradeoff.
3. Learning experiment with those as gradient estimators.

Plan:
» Properties of U-statistics, see ,
» Contributions 1-3.
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Overview of U-statistics



U-statistics: definition and examples

Introduce K independent i.i.d. samples Dy = {X1(k) X(k)} C X,
and the kernel h : X7 x ... x X% — Rwithh € [2,
The generalized U-statistic of degrees (d,, ..., dk)is defined as:

(M (2 (K)
Un(h) = 8 1(nk Z Zh ; ,x,2 LX),

h
where Z,k is the sum over all (Zﬁ) subsets of d, elements of Dy.

Examples:
» asample variance h(x;,x2) = (x1 — x2)?,
» Kendall’s tau h((x1,y1), (x2,¥2)) = I{(qa — x2) - (s —y2) > 0},
» clustering, metric learning and ranking criterions.

Here: study quantitatively a common case in a distributed setting.



Two-sample U-statistics
Introduce, with m < n:
» the abundant positive i.i.d. sample D, = {X;,...,X,} C X,
» the scarce negativei.i.d. sample O, = {Z;,...,Zy} C Z,
> akernelh: X x Z — R.

Objective: Estimate U(h) = E[h(X1, Z1)].
With n = (n, m), the U-statistic U,, where:

1 n m
Uni=——3> > h(X:Z),

i=1 j=1
is the unbiased estimator of U(h) with lowest variance.

Un is an average of nm elements — What if n = 10, m = 103?
One answer is incomplete U-statistics ,

~ 1
Ug := E Z h(Xth)a
(I,])EDB
where Dy is a set of B elements sampled WRin {(/, /) }ic[n) je[m]-



Properties of two-sample U-statistics
With the Hajék projections h(x) = E[h(x, Z1)], h2(2) = E[h(X:,2)],
and ho(x,z) = h(x,z) — l(x) — hy(z) + U(h),
then Uy = T + Ty + Wy — U with

;o ;o TR
T, = nz1h1(X,) and T, = - th(zj) and Wo = mzzho(xivzj)v
=

J=1 i=1 j=1
which is called the second Hoeffding decomposition.
A U-statistic U, is called degenerate when hy = Uand h, = U a.s..
Introducing o = Var((X)), 03 = Var(hy(2)), o2 = Var(ho(X1,Z1)):

2 2 2
[oX g g
Var(Un) = <5+ 20+ 1.

Examples with X;, 7, ~ U[-1,1]:

h(x,z) =x+zgiveso3 =0. | h(x,z) =x-zgiveso?, 0% = 0.
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Estimators for distributed data



Distributed data

We distribute the data on N workers.

Require
7 network
17l communication.

One can distribute the instances:
» with SWOR (SWR): sampling without (with) replacement,
» proportionally: each cluster contains n/N instances from Dj,
and m/M from Q.

Here: Focus on proportional SWOR



Naive estimators (1/2)

Averaging full U-statistics from each cluster gives Un y.

X, . Xi . X, ean
ul’
u®

US) i Un,N
ul?

Proposed statistics: Un v



Naive estimators (2/2)

Averaging B pairs SWR from each cluster gives U,LN,B.

X1 Xi Xn mean

- Un,np

4)
Un,B )

Proposed statistics: Un v, amN,B,



Estimators with redistribution (1/2)

Averaging Un y on T redistributions of the data gives amN,T.

Xoy) - Xoyy -+ Xopym) mean

. mean

U;) overt

2

v | g0 1 g
v® i n,N n,N,T
n

Uiy

Proposed estimators: Un , an,N,B’ LA/.,7N7T.
With oy, m: random permutations at time t.



Estimators with redistribution (2/2)

Averaging UmN’B on T redistributions of the data gives U,LN,B,T.

XO't(l) XO't(i) Xat(n) mean
1) mean
U5 over t

(2)
Un,B
3)
Un,B
(4)
Un,B

Proposed estimators: Un , L~/n7N73, LA/.,7N7T, and U,,,N,B,T.
With oy, T random permutations at time t.

All of the estimators are unbiased.



Variance expressions
We have: Variances in closed form.

For the naive estimators:

2
Var(Un) = Var(Un) + (N = 1)~

_ 1 2
Var(Unng) = (1 = B) Var(Unn) +

o

— Termin Nog /nm.

For the estimators with redistribution:
o5

Var(Un) = Var(Un) + (N = 1),

~ ~ 1
Var(Unn,,1) = Var(Unn,1) — ﬁVar(Un,N) -

— Term in No3 /Tnm.
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[llustrations of the variances

02 = 1.00, 07 = 0.25, o3 = 0.00
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- Redistribution is useful when 03 < o3,
- For any same # of pairs, Un ~,B,7 isworse than Un N,T-
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Learning with distributed U-statistics



Optimize the convexified AUC

Objective: optimize the AUC using a its convex upper-bound:
(hAUC S ZH{W X Z) > 0}

- Z [1 FwT (X — z,-)} = Unlfcom).

nm “—
hJ

Optimizer: Momentum BGD with LR 1072, mom. 0.9 for 5 x 10% iter.

Loss: Un .y g(hconv) + A|lw|3, where we redistribute each n, iter.
Parameters: N = 100, B = 500, A = 0.01,n, € {1,5,25, +00}.

Dataset: Shuttle (outlier dataset), n = 45,000, m = 3,500,
20% as test set, train monitored on a fixed set of 450K pairs,
see



Results
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- Not redistributing — end performance very noisy@
- Redistributing — better performance (with high. prob.) @




Danke, please come see us at the poster session !
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