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My thesis

Started in 06/2017, CIFRE between Telecom Paris and IDEMIA.

Advisors: Stéphan Clémençon, Aurélien Bellet and Anne Sabourin.

IDEMIA stems from themerger in 2017 of Safran Identity and
Security (formerlyMorpho) and Oberthur Technologies.
It specializes in biometrics and computer security.

I have been part of the facial recognition (FR) team since 12/2016,
and had some experience with deep face encoding models.

My thesis tackle statistical machine learning problems oriented by
FR issues, with a focus on ranking and similarity learning.

Other publications:
· ICML 2018: guarantees for ERM of TPR@FPR= αwith similarities,
· LOD 2019: learn tree-based similaritieswith good ROC curves.
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Biometric verification (1/2)

A biometric system uses:
I Twomeasurements X and X′,
I A similarity S that quantifies the likeness of (X, X′),
I A threshold t that separates positive and negative pairs.

Aim: S(X, X′) > t is a good indicator of Z = +1 with:

Z =

{
+1 if (X, X′) from the same person,
−1 otherwise.

Two types of errors:

TPRS(t) := P{S(X, X′) > t | Z = +1},
FPRS(t) := P{S(X, X′) > t | Z = −1}.

The set {(FPRS(t), TPRS(t)) | t ∈ R} is known as the ROC curve.
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Biometric verification (2/2)

Figure: Extract of the NIST Face Recognition Vendor Test (FRVT) report.

Several criterions measure ROC accuracy:
I Area Under the ROC Curve (AUC),
I Pointwise ROC optimization (pROC) see [Vogel et al., 2018].

What if we estimate AUC or pROC in a distributed environment ?
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Large scale distributed data processing

Very large datasets are common nowadays in ML.
→ Distribute the data in partitions over several machines.

Cluster computing frameworks:
· Abstract network and communication aspects of distribution.
· Restrict the types of operations e�iciently achieved.
E.g. Apache Spark [Meng et al., 2016], Petuum [Xing et al., 2015], . . .

Most ML techniques optimize standardmeans L̂ =
∑

i `(xi)/n,
Those are separable across partitions.
→ One can e�iciently estimate those.

Very common statistics - e.g. U-statistics - are not.
→ Estimation can be slow or inaccurate.
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Illustration: estimation of the AUC
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Let X ∈ {0, 2} be the positive class input r.v.,
Z ∈ {−1,+1} the negative class r.v., with:

P{X = 2} = P{Z = 1} = 1− ε.

We estimate the AUCE[h(X, Z)]with h : x, z 7→ I{x > z}, with
n = 5, 000 (resp.m = 50) positive (resp. negative) observations,
with global or distributed estimators with N = 10 clusters.

As ε→ 0, local estimators get poorer.
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Our contribution

Problem:
When a statistic is not separable across partitions,
frameworks may be unsuited to computing accurate estimators.

Contribution: Quantified analysis for U-statistics,
1. E�icient estimators of U-statistics in a distributed setting.
2. The analysis of their accuracy-vs-time tradeo�.
3. Learning experiment with those as gradient estimators.

Plan:
I Properties of U-statistics: variance and bounds,
see [Hoe�ding, 1948], [Clémençon et al., 2016],

I Distributing the data,
I Contributions 1-3.
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U-statistics: definition and examples

Introduce K independent i.i.d. samplesDk = {X(k)
1 , . . . , X(k)

nk } ⊂ Xk,
and a kernel h : X d1

1 × · · · × X dK
K → Rwith h ∈ L2.

The generalized U-statistic of degrees (d1, . . . , dK) is defined as:

Un(h) =
1∏K

k=1
(nk
dk

)∑
I1

. . .
∑
IK

h(X(1)
I1 , X

(2)
I2 , . . . , X

(K)
IK ),

where
∑

Ik is the sum over all
(nk
dk

)
subsets of dk elements ofDk.

Examples:
I a sample variance h(x1, x2) = (x1 − x2)2,
I Kendall’s tau h((x1, y1), (x2, y2)) = I{(x1 − x2) · (y1 − y2) > 0},
I clustering,metric learning and ranking criterions.

10



Two-sample U-statistics of degree (1, 1)

We focus on a two-sample U-statistics for simplicity,
but results can be extended.

Introduce, withm� n:
I the abundant positive i.i.d. sampleDn = {X1, . . . , Xn} ⊂ X ,
I the scarce negative i.i.d. sampleQm = {Z1, . . . , Zm} ⊂ Z ,
I a kernel h : X × Z 7→ R.

Objective: Estimate U(h) = E[h(X1, Z1)].

With n = (n,m), the U-statistic Un, where:

Un :=
1
nm

n∑
i=1

m∑
j=1

h(Xi, Zj),

is the unbiased estimator of U(h)with lowest variance.
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First Hoe�ding decomposition

IntroduceSn as the symmetric group over {1, . . . , n},
and N = n ∧m the minimum of n andm.
The first Hoe�ding decompositionwrites Un as an average of
dependent standard empirical processes. Formally,

Un =
1

n!m!

∑
σ1∈Sn

∑
σ2∈Sm ︸ ︷︷ ︸

Ūn

1
N

N∑
i=1

h(Xσ1(i), Zσ2(i)).

Jensen’s inequality applied to the Cherno� bound of Un − E[U],
imply that P {Un − EU > a} ≤ e−ta · E

[
et(Ūn−EU)

]
.

Consequence: One can derive concentration inequalities in N of the
same type as those for empirical processes.
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Empirical Risk Minimization (ERM) of U-statistics

Proposition 1
Proposition 2 of [Clémençon et al., 2016].
LetH be a collection of symmetric kernels bounded by 1.
Suppose thatH is a VC-major class of functions with VC dimension V.
For all δ ∈ (0, 1), we have with probability at least 1− δ,

sup
h∈H
|Un − U| ≤ 2

√
2V log(1+ N)

N
+

√
log(1/δ)

N
.

Consequence: Finite-time bounds for ERM of U-statistics,
since with hnminimizer of Un:

U(hn)− U(h∗) ≤ 2 sup
h∈H
|Un − U|.
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Second Hoe�ding decomposition
Set theHajèk projections h1(x) = E[h(x, Z1)], h2(z) = E[h(X1, z)],

and h0(x, z) = h(x, z)− h1(x)− h2(z) + U(h).

A U-statistic Un is called degeneratewhen h1 = U and h2 = U a. s.

The second Hoe�ding decomposition decomposes Un as a sum of:
two empirical processes and a degenerate U-statistic.

Formally, Un = T1 + T2 + W0 − Uwith

T1 =
1
n

n∑
i=1

h1(Xi) and T2 =
1
m

m∑
j=1

h2(Zj) andW0 =
1
nm

n∑
i=1

m∑
j=1

h0(Xi, Zj),

Consequences:
· Easy derivation of the variance of Un,
· Sharper learning bounds under noise assumptions.
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Variance of a U-statistic

Introducing σ21 = Var(h1(X)), σ22 = Var(h2(Z)), σ20 = Var(h0(X1, Z1)):

Var(Un) =
σ21
n

+
σ22
m

+
σ20
nm

.

The variance of Un depends on:
· the distribution of X and Z,
· the kernel h.
Their contribution is summarized by the coe�icients σ20, σ21 and σ22 ,
as well as that of all the estimators in this talk !

Examples: with X1, Z1 centered random variables:
h(x, z) = x + z gives σ20 = 0. | h(x, z) = x · z gives σ21 , σ22 = 0.
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Faster bounds for ERM of U-statistics
Proposition 2
See [Arcones and Giné, 1994].
Under similar assumptions as Proposition 1.
For all δ ∈ (0, 1), we have with probability at least 1− δ,

sup
h∈H
|W0| ≤ C

V log(N/δ)

N
.

Introduce a variance condition for T1 and T2, of the form, for T1:

Var(h1(X)) ≤ c (E[h1(X)])a ,

with c ∈ R+, a ∈ [0, 1].

Using Bernstein’s or Talagrand’s inequality, solving a fixed point
inequality gives a bound in O(N−1/(2−a)) on T1, without log terms.

See [Clémençon et al., 2008] for more details.
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Incomplete U-statistics

Un is an average of nm elements→What if n = 109,m = 103?:

One answer is incomplete U-statistics,

ŨB :=
1
B

∑
(i,j)∈DB

h(Xi, Zj),

whereDB is a set of B elements selected with sampling with
replacement (SWR) in Λ = {(i, j)}i∈JnK,j∈JmK.

Equation (21) in [Clémençon et al., 2016]:

Var(ŨB) =

(
1− 1

B

)
Var(Un) +

1
B
Var(h(X, Z)).
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Learning with incomplete U-statistics

Theorem 3
Theorem 6 of [Clémençon et al., 2016].
Under the same assumptions as Proposition 1:
For all δ ∈ (0, 1), we have with probability at least 1− δ,

sup
h∈H
|ŨB − Un| ≤

√
2
V log(1+ #Λ) + log(2/δ)

B
.

Consequences:
· Choosing B ∼ N, yields an ERM bound in O(

√
log(N)/N) for the

minimization of ŨB.
·Minimizing complete U-statistics of a small subsample that forms
B ∼ N pairs, yields an ERM bound in O(

√
log(N)/N1/4).
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Distributed environment

We distribute the data on Nworkers, see figure below.

One is themaster node, its role is to aggregate local estimates.

In this context,
computing Un or ŨB require too much network communication.
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Ways of distributing data

One can distribute the instances following:
· sampling without replacement (SWOR),
→ e.g. when splitting large datasets on several servers.
· sampling with replacement (SWR),
→ e.g. for parallel calculus on lots of batches from a largememory.

B Using SWOR or SWR, maybe no elements ofQm are in a worker.
One can pass a default value for the local estimates,
but it makes the analysis complicated.

We can distribute data proportionally:
· each cluster contains n/N instances fromDn, andm/M fromQm.
· For SWOR, achieved by sharing a random seed between workers.
These settings are named prop-SWOR and prop-SWR.

Here: prop-SWOR unless otherwise specified (see paper for others).
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Naive estimators (1/2)

Averaging full U-statistics from each cluster gives Un,N.

Proposed statistics: Un,N
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Naive estimators (2/2)

Averaging B pairs SWR from each cluster gives Ũn,N,B.

Proposed statistics: Un,N, Ũn,N,B,

Idea: Improve the precision by averaging unseen pairs.
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Estimators with redistribution (1/2)

Averaging Un,N on T redistributions of the data gives Ûn,N,T .

Proposed estimators: Un,N, Ũn,N,B, Ûn,N,T .
With σt, πt random permutations at time t.
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Estimators with redistribution (2/2)

Averaging Ũn,N,B on T redistributions of the data gives Ũn,N,B,T .

Proposed estimators: Un,N, Ũn,N,B, Ûn,N,T , and Ũn,N,B,T .
With σt, πt random permutations at time t.

All of the estimators are unbiased.
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Variance expressions
We have: Variances in closed form.

For the naive estimators:

Var(Un,N) = Var(Un) + (N− 1) σ
2
0

nm
,

Var(Ũn,N,B) =

(
1− 1

B

)
Var(Un,N) +

σ2

NB
.

→ Term in Nσ20/nm.

For the estimators with redistribution:

Var(Ûn,N,T) = Var(Un) + (N− 1) σ20
nmT

,

Var(Ũn,N,B,T) = Var(Ûn,N,T)− 1
TB
Var(Un,N) +

σ2

NTB
.

→ Term in Nσ20/Tnm.
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Illustrations of the variances - prop-SWOR

With n = 100, 000,m = 200 and N = 100.
· Redistribution is useful when σ22 � σ20,
· For any same# of pairs, Ũn,N,B,T is worse than Ûn,N,T .
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Illustrations of the variances - prop-SWR
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With n = 100, 000,m = 200 and N = 100.
· Similar results,
· Ũn,N,B,T corrects the redundancy induced by SWOR.
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Repartitioning for stochastic gradient descent

Objective:
Assume thatH is indexed by a parameter θ ∈ Rq, minimize Un(hθ),
the most accurate approximation of U(hθ), by gradient descent.

Un and ŨB are not e�icient in a distributed environment.
See [Papa et al., 2015] for the analysis of SGD for incomplete U-stats.

Idea: Use gradient estimators with redistribution.
The gradient estimators are∇θŨn,N,B(hθ),
but we redistribute the data every nr gradient steps,
nr = 1 optimizes for Un, while nr = +∞ optimizes for Un,N.

Challenge: Studying such an optimization process is hard,
since the objective changes every nr iterations.
→We demonstrate its e�ectiveness empirically.
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Application: Optimize a relaxation of the AUC

Objective: optimize the AUC using a its convex upper-bound:

Un(hAUC) :=
1
nm

∑
i,j

I{w>(Xi − Zj) > 0},

≤ 1
nm

∑
i,j

[
1+ w>(Xi − Zj)

]
+

=: Un(hconv).

Optimizer: Momentum BGDwith LR 10−2, mom. 0.9 for 5× 103 iter.
Loss: Un,N,B(hconv) + λ‖w‖22, with redistribution each nr iter.
Parameters: N = 100, B = 500, λ = 0.01, nr ∈ {1, 5, 25,+∞}.
Dataset: Shuttle (outlier dataset), n = 45, 000,m = 3, 500,
20% as test set, train monitored on a fixed set of 450K pairs,
see [Rayana, 2016].
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Application: Results

· Not redistributing→ end performance very noisy
· Redistributing→ better performance (with high. prob.)
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Thank you for your attention !
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