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INTRODUCTION
Fairness is crucial to machine learning systems
operating in very sensitive contexts, such as:
· in the banking sector,
· for diagnosis in medicine,
· for recidivism prediction in criminal justice.

Bipartite ranking formalizes many problems naturally
such as credit scoring or biometric authentification.

Example 1 (Credit-risk screening).
A bank assigns the score s(X) to a client and grants
a loan if s(X) > t. The threshold t is unknown when
learning s, as it depends on their risk aversion (low).

Contributions. We propose:
· a general formulation for AUC constraints,
· a new ROC-based fairness constraint,
· generalization guarantees for fair scoring,
· to learn fair scoring functions by gradient descent.

PRELIMINARIES
Definitions. (X,Y, Z) r.v.’s in Rd × {−1, 1} × {0, 1}.
We predict Y using X , while Z is the sensitive group.

For any z ∈ {0, 1}, we set:
· H(z) is the distribution of X | Y = −1, Z = z,
· G(z) is the distribution of X | Y = +1, Z = z.

For any s : Rd → R and F ∈ {H,G}, we set F (z)
s as

the distribution on R induced by s using F (z).
Notably H(0)

s (t) = P{s(X) ≤ t | Y = −1, Z = 0}.

The ROC curve is used to visualize the dissimilarity
between two distributions h, g on R,

ROCh,g : α ∈ [0, 1]→ 1− g ◦ h−1(1− α).

The AUCh,g is the area under the ROCh,g curve .

ILLUSTRATING AUC FAIRNESS
Consider s with the following distributions:
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(BNSP AUC [1]),
but we have very different TPR’s for low FPR’s.
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Objective for fair
scoring at low FPR

Therefore, any classifier gs,t : x 7→ 2 · I{s(x) > t}− 1
derived from s can be very unfair in TPR.

LEARNING SCORING FUNCTIONS
AUC-based fairness. Minimize Lλ(s), e.g. equal to:

AUCHs,Gs − λ
∣∣AUC

H
(0)
s ,G

(0)
s
−AUC

H
(1)
s ,G

(1)
s

∣∣,
where λ is a fairness regularization hyperparameter.

Generalization guarantees for the ERM of Lλ:
→ Rely on the theory of U -processes.

ROC-based fairness. Introducing Λ := (α, λH , λG),
we minimize LΛ(s) defined as:

AUCHs,Gs −
mH∑
k=1

λ
(k)
H

∣∣∆
H,α

(k)
H

∣∣− mG∑
k=1

λ
(k)
G

∣∣∆
G,α

(k)
G

∣∣,
where λF = [λ

(1)
F , . . . , λ

(mF )
F ] are fairness regulariza-

tion hyperparameters for any F ∈ {H,G}.

Generalization guarantees for the ERM of LΛ:
→ the empirical ROC curve is almost a composition of
empirical processes, we study its uniform deviation.

ROC-BASED FAIRNESS
AUC-based fairness implies that the ROC’s intersect
at some unknown point in the ROC plane.

We propose pointwise ROC fairness constraints as
an alternative to AUC-based constraints.
For α ∈ [0, 1], consider:

∆G,α(s) := ROC
G

(0)
s ,G

(1)
s

(α)− α,(
resp. ∆H,α(s) := ROC

H
(0)
s ,H

(1)
s

(α)− α
)
.

Enforcing G(0)
s = G

(1)
s (resp. H(0)

s = H
(1)
s ) is equiva-

lent to ∀α ∈ [0, 1],∆G,α(s) = 0 (resp. ∆H,α(s) = 0).

We propose to satisfy a finite number of constraints
on ∆H,α(s) and ∆G,α(s) for relevant values of α.
We denote them as αF = [α

(1)
F , . . . , α

(mF )
F ]

where F = G for ∆G,α (resp. F = H for ∆H,α).

Constraints in sup norm on an entire interval can be
derived from a small number of pointwise constraints.

EXPERIMENTS

We smooth empirical losses L̂λ and L̂Λ with the logistic function x 7→ 1/(1 + e−x) and maximize them with SGD.
Following the low FPR objective, ROC constraints penalize high |∆G,1/8|, |∆G,1/4|, |∆H,1/8| and |∆H,1/4|.

Compas is a recidivism prediction dataset. Then Z = 1 if a sample is African-American, Z = 0 otherwise.
Being labeled positive is a disadvantage, thus we chose the BPSN AUC constraint AUC

H
(0)
s ,Gs

= AUC
H

(1)
s ,Gs

.

Adult is a salary prediction (Y = 1 if above 50K$) dataset. Then Z = 1 if a sample is male, Z = 0 if female.
No obvious disadvantage from Y = 1 or Y = −1, thus we chose AUC
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AUC-BASED FAIRNESS
Denote by (e1, e2, e3, e4) the canonical basis of R4,
AUC constraints are equalities of AUC’s between
mixtures of D(s) := (H

(0)
s , H

(1)
s , G

(0)
s , G

(1)
s )>.

Given probability vectors α, β, α′, β′, they write as:

AUCα>D(s),β>D(s) = AUCα′>D(s),β′>D(s). (1)

For example, [2] proposed the BNSP AUC, [1] (r. [3])
the intra-group (r. inter) pairwise AUC fairness.

We show that fairness constraints of the form eq. (1)
are combinations of elementary constraints Cl(s) = 0:

CΓ(s) : Γ>C(s) =
∑5
l=1 ΓlCl(s) = 0, (2)

where Γ = (Γ1, . . . ,Γ5)> ∈ R5.

Theorem 1. The following statements are equivalent:
1. Eq. (1) is satisfied for any s when H(0) = H(1),
G(0) = G(1) and η(X) not a.s. constant.

2. Eq. (1) is equivalent to CΓ(s) for some Γ ∈ R5,
3. (e1 + e2)>[(α− α′)− (β − β′)] = 0.
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