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INTRODUCTION

Fairness 1s crucial to machine learning systems
operating 1n very sensitive contexts, such as:

- 1n the banking sector,

- for diagnosis 1n medicine,

- for recidivism prediction in criminal justice.

Bipartite ranking formalizes many problems naturally
such as credit scoring or biometric authentification.

Example 1 (Credit-risk screening).

A bank assigns the score s(X) to a client and grants
a loan if s(X) > t. The threshold t is unknown when
learning s, as it depends on their risk aversion (low).

Contributions. We propose:

- a general formulation for AUC constraints,

- a new ROC-based fairness constraint,

- generalization guarantees for fair scoring,

- to learn fair scoring functions by gradient descent.

PRELIMINARIES

Definitions. (X,Y, Z) rv’sin RY x {—1,1} x {0, 1}.
We predict Y using X, while Z 1s the sensitive group.

For any z € {0, 1}, we set:
. H?) is the distributionof X | Y = —1,7 = z,
. G#) is the distribution of X | Y = +1, 7 = z.

Forany s : R — Rand ' € {H,G}, we set F'% as
the distribution on R induced by s using F(%).

Notably /") (t) = P{s(X) <t |Y = —1,Z = 0}.

The ROC curve is used to visualize the dissimilarity

between two distributions h, g on R,
ROCh,:a€[0,1] =1 —goh™'(1-a).

The AUCy, 4 1s the area under the ROCy, , curve .

REFERENCES

[1] Alex Beutel et al. Fairness in recommendation ranking
through pairwise comparisons. In SigKDD, 2019.

[2] Daniel Borkan, Lucas Dixon, Jeffrey Sorensen, et al. Nu-

anced metrics for measuring unintended bias with real
data for text classification. In WWW, 20109.

[3] Nathan Kallus and Angela Zhou. The fairness of risk
scores beyond classification: Bipartite ranking and the
XAUC metric. In NeurIPS. 2019.

Robin Vogel'“, Aurélien Bellet’ and Stephan Clémencon'

TLLUSTRATING AUC FAIRNESS ROC-BASED FAIRNESS LEARNING SCORING FUNCTIONS

Consider s with the following distributions:

Notations for conditional
score distributions
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but we have very different TPR’s for low FPR’s.
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Therefore, any classifier g5 ¢ : © — 2-I{s(x) >t} —1
derived from s can be very unfair in TPR.

AUC-BASED FAIRNESS

Denote by (eq, ea, e3,e4) the canonical basis of R*,
AUC constraints are equalities of AUC’s between

(Héﬂ) H§1> Ggo) Ggl))T

mixtures of D(s) :=

Given probability vectors «, 3, ', 3’, they write as:

AUCOzTD(S),BTD(S) — AUCQ{’TD(S),ﬁ’TD(S)° (1)

For example, [2] proposed the BNSP AUC, [1] (r. [3])
the intra-group (r. inter) pairwise AUC fairness.

We show that fairness constraints of the form eq. (1)
are combinations of elementary constraints C;(s) = 0:
I'C(s)=>,_,iCi(s) =0, (2)

c R°.

CF(S) .

where I' = (I'y,...,T'5)"

Theorem 1. The following statements are equivalent:

1. Eq. (1) is satisfied for any s when H\®) = H),
G = G and n(X) not a.s. constant.

2. Eq. (1) is equivalent to Cr(s) for some I" € R?,

3. (e1+e) [(a—a)—(B-p)]=0
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AUC-based fairness implies that the ROC’s intersect
at some unknown point in the ROC plane.

We propose pointwise ROC fairness constraints as
an alternative to AUC-based constraints.
For o € |0, 1], consider:

AG a(S) .= ROC
(resp. AH@(S) L= ROCHéo),H(l) (oz) — oz).

Enforcing Ggo) = Ggl) (resp. ,SO) =H gl)) 1S equiva-
lent to Vo € [0, 1], Ag.o(s) = 0 (resp. Ao (s) = 0).

We propose to satisfy a finite number of constraints

on Ay . (s) and Ag (s) for relevant values of a.

We denote them as ap = [Ozg), . a%mF)]

where I' = G for Ag , (resp. F' = H for A ).

Constraints 1n sup norm on an entire interval can be
derived from a small number of pointwise constraints.

EXPERIMENTS

We smooth empirical losses Ly and L with the logistic function z — 1 /(14e™"

{{)) IDEMIA

AUC-based fairness. Minimize L) (s), e.g. equal to:

AUCy, . — A|AUC AUC

where A 1s a fairness regularization hyperparameter.
Generalization guarantees for the ERM of L :

— Rely on the theory of U-processes.

ROC-based fairness. Introducing A := (a, Ay, A\),
we minimize L (s) defined as:

M g mag

AUCH, 6. = D i |8 0| = 2006146
k=1 a k=1 :
where \p = [)\g), . )\%mF )] are fairness regulariza-

tion hyperparameters for any F' € { H,G'}.

Generalization guarantees for the ERM of L :
— the empirical ROC curve is almost a composition of
empirical processes, we study its uniform deviation.

) and maximize them with SGD.

Following the low FPR objective, ROC constraints penalize high |Aq /5|, |Ag /4], [Am /s and [Ag /4.

Compas is a recidivism prediction dataset. Then Z = 1 if a sample 1s African-American, Z = 0 otherwise.

Being labeled positive is a disadvantage, thus we chose the BPSN AUC constraint AUC

= AUC

HY G, Y .G,

Adult is a salary prediction (Y = 1 if above 50K$) dataset. Then Z = 1 if a sample is male, Z = 0 if female.

No obvious disadvantage from Y = 1 or Y = —1, thus we chose AUC
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