

Learning Fair Scoring Functions

Bipartite Ranking under ROC-based Fairness Constraints

Robin Vogel^{1,2}, Aurélien Bellet³ and Stephan Clémençon¹ ¹ Télécom Paris, ² IDEMIA, ³ Inria

$\langle \langle \rangle \rangle$ IDEMIA

INTRODUCTION

Fairness is crucial to machine learning systems operating in very sensitive contexts, such as:

- · in the banking sector,
- · for diagnosis in medicine,
- · for recidivism prediction in criminal justice.

Bipartite ranking formalizes many problems naturally such as **credit scoring** or biometric authentification.

Example 1 (Credit-risk screening).

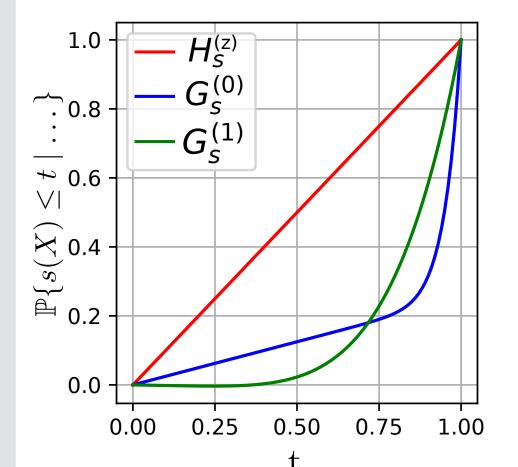
A bank assigns the score s(X) to a client and grants a loan if s(X) > t. The threshold t is unknown when learning s, as it depends on their risk aversion (low).

Contributions. We propose:

- · a general formulation for AUC constraints,
- a new ROC-based fairness constraint,
- egeneralization guarantees for fair scoring,
- · to learn fair scoring functions by gradient descent.

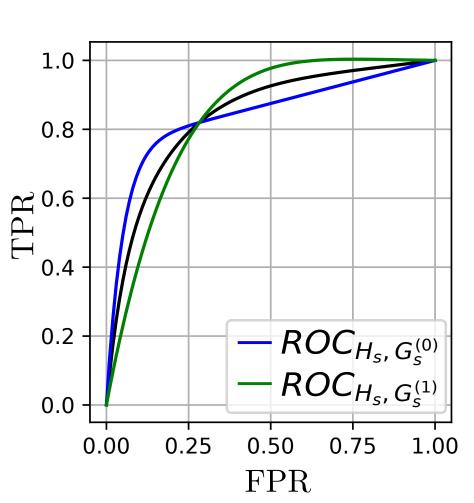
ILLUSTRATING AUC FAIRNESS

Consider s with the following distributions:



Notations for conditional score distributions		
Group×Class	Y = -1	Y = +1
Z = 0	H _s ⁽⁰⁾	G ⁽⁰⁾
Z = 1	H _s ⁽¹⁾	G ⁽¹⁾
$Z \in \{0, 1\}$	Hs	Gs

Then $AUC_{H_s,G_s^{(0)}} = AUC_{H_s,G_s^{(1)}}$ (BNSP AUC [1]), but we have very different TPR's for low FPR's.



AUC-BASED FAIRNESS

where $\Gamma = (\Gamma_1, \dots, \Gamma_5)^{\top} \in \mathbb{R}^5$.



Therefore, any classifier $g_{s,t}: x \mapsto 2 \cdot \mathbb{I}\{s(x) > t\} - 1$ derived from s can be very unfair in TPR.

Denote by (e_1, e_2, e_3, e_4) the canonical basis of \mathbb{R}^4 ,

AUC constraints are equalities of AUC's between

Given probability vectors $\alpha, \beta, \alpha', \beta'$, they write as:

 $AUC_{\alpha^{\top}D(s),\beta^{\top}D(s)} = AUC_{\alpha'^{\top}D(s),\beta'^{\top}D(s)}.$ (1)

For example, [2] proposed the BNSP AUC, [1] (r. [3])

We show that fairness constraints of the form eq. (1)

are combinations of elementary constraints $C_l(s) = 0$:

Theorem 1. The following statements are equivalent:

1. Eq. (1) is satisfied for any s when $H^{(0)} = H^{(1)}$,

2. Eq. (1) is equivalent to $C_{\Gamma}(s)$ for some $\Gamma \in \mathbb{R}^5$,

 $G^{(0)} = G^{(1)}$ and $\eta(X)$ not a.s. constant.

3. $(e_1 + e_2)^{\top} [(\alpha - \alpha') - (\beta - \beta')] = 0$.

 $C_{\Gamma}(s): \quad \Gamma^{\top}C(s) = \sum_{l=1}^{5} \Gamma_{l}C_{l}(s) = 0, \quad (2)$

mixtures of $D(s) := (H_s^{(0)}, H_s^{(1)}, G_s^{(0)}, G_s^{(1)})^{\top}$.

the intra-group (r. inter) pairwise AUC fairness.

PRELIMINARIES

Definitions. (X, Y, Z) r.v.'s in $\mathbb{R}^d \times \{-1, 1\} \times \{0, 1\}$. We predict Y using X, while Z is the sensitive group.

For any $z \in \{0, 1\}$, we set:

- $\cdot H^{(z)}$ is the distribution of $X \mid Y = -1, Z = z$,
- $\cdot G^{(z)}$ is the distribution of $X \mid Y = +1, Z = z$.

For any $s: \mathbb{R}^d \to \mathbb{R}$ and $F \in \{H, G\}$, we set $F_s^{(z)}$ as the distribution on \mathbb{R} induced by s using $F^{(z)}$.

Notably $H_s^{(0)}(t) = \mathbb{P}\{s(X) \le t \mid Y = -1, Z = 0\}.$

The ROC curve is used to visualize the dissimilarity between two distributions h, g on \mathbb{R} ,

$$ROC_{h,g} : \alpha \in [0,1] \to 1 - g \circ h^{-1}(1 - \alpha).$$

The $AUC_{h,q}$ is the area under the $ROC_{h,q}$ curve.

REFERENCES

- [1] Alex Beutel et al. Fairness in recommendation ranking through pairwise comparisons. In SigKDD, 2019.
- [2] Daniel Borkan, Lucas Dixon, Jeffrey Sorensen, et al. Nuanced metrics for measuring unintended bias with real data for text classification. In WWW, 2019.
- [3] Nathan Kallus and Angela Zhou. The fairness of risk scores beyond classification: Bipartite ranking and the XAUC metric. In NeurIPS. 2019.

ROC-BASED FAIRNESS

AUC-based fairness implies that the ROC's intersect at some **unknown point** in the ROC plane.

We propose pointwise ROC fairness constraints as an alternative to AUC-based constraints. For $\alpha \in [0, 1]$, consider:

$$\Delta_{G,\alpha}(s) := \text{ROC}_{G_s^{(0)},G_s^{(1)}}(\alpha) - \alpha,$$

$$(\text{resp. } \Delta_{H,\alpha}(s) := \text{ROC}_{H_s^{(0)},H_s^{(1)}}(\alpha) - \alpha).$$

Enforcing
$$G_s^{(0)} = G_s^{(1)}$$
 (resp. $H_s^{(0)} = H_s^{(1)}$) is equivalent to $\forall \alpha \in [0, 1], \Delta_{G, \alpha}(s) = 0$ (resp. $\Delta_{H, \alpha}(s) = 0$).

We propose to satisfy a finite number of constraints on $\Delta_{H,\alpha}(s)$ and $\Delta_{G,\alpha}(s)$ for relevant values of α . We denote them as $\alpha_F = [\alpha_F^{(1)}, \dots, \alpha_F^{(m_F)}]$ where F = G for $\Delta_{G,\alpha}$ (resp. F = H for $\Delta_{H,\alpha}$).

Constraints in sup norm on an entire interval can be derived from a small number of pointwise constraints.

LEARNING SCORING FUNCTIONS

AUC-based fairness. Minimize $L_{\lambda}(s)$, e.g. equal to:

$$AUC_{H_s,G_s} - \lambda |AUC_{H_s^{(0)},G_s^{(0)}} - AUC_{H_s^{(1)},G_s^{(1)}}|,$$

where λ is a fairness regularization hyperparameter.

Generalization guarantees for the ERM of L_{λ} : \rightarrow Rely on the theory of U-processes.

ROC-based fairness. Introducing $\Lambda := (\alpha, \lambda_H, \lambda_G)$, we minimize $L_{\Lambda}(s)$ defined as:

$$AUC_{H_s,G_s} - \sum_{k=1}^{m_H} \lambda_H^{(k)} |\Delta_{H,\alpha_H^{(k)}}| - \sum_{k=1}^{m_G} \lambda_G^{(k)} |\Delta_{G,\alpha_G^{(k)}}|,$$

where $\lambda_F = [\lambda_F^{(1)}, \dots, \lambda_F^{(m_F)}]$ are fairness regularization hyperparameters for any $F \in \{H, G\}$.

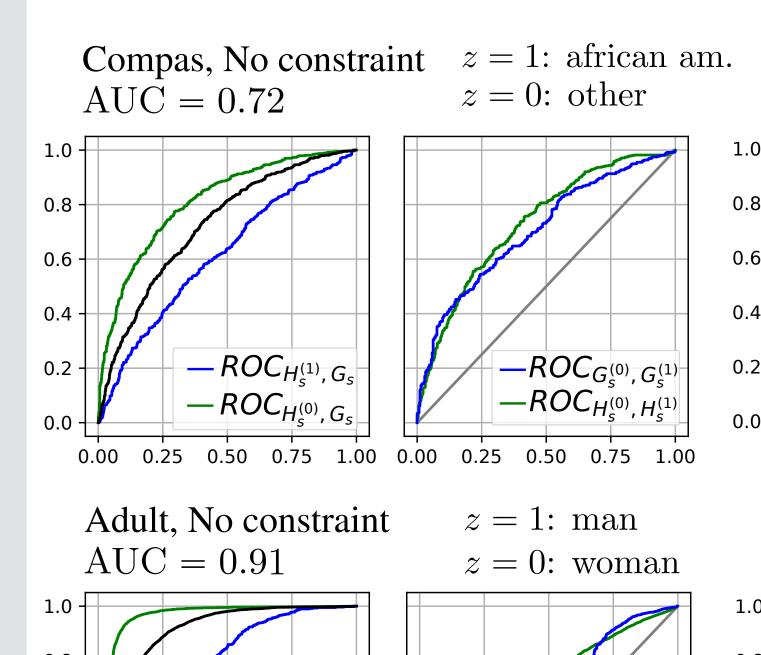
Generalization guarantees for the ERM of L_{Λ} : → the empirical ROC curve is almost a composition of empirical processes, we study its uniform deviation.

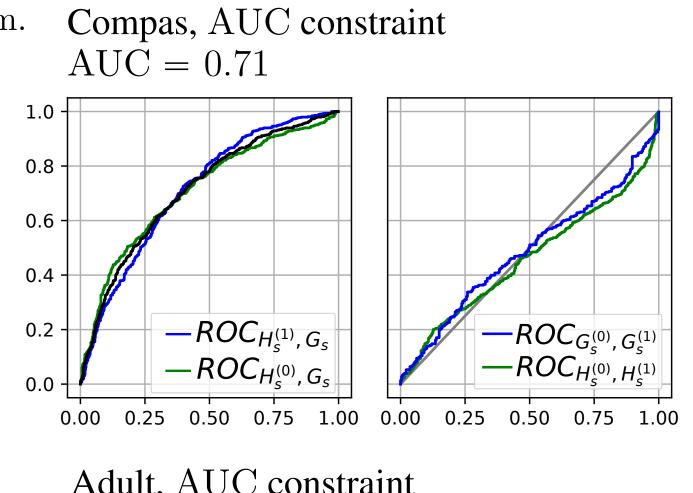
EXPERIMENTS

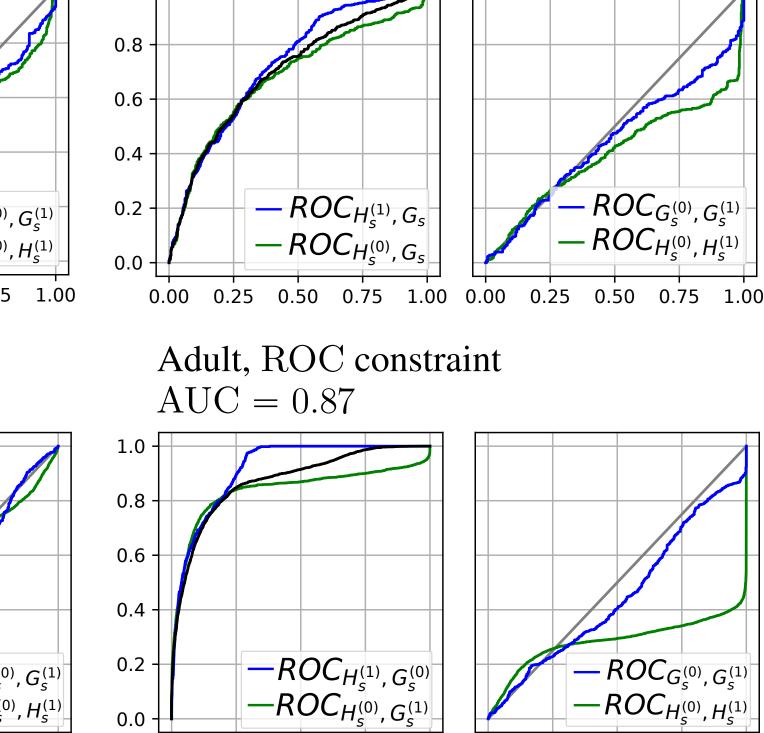
We smooth empirical losses \widehat{L}_{λ} and \widehat{L}_{Λ} with the logistic function $x \mapsto 1/(1+e^{-x})$ and maximize them with SGD. Following the low FPR objective, ROC constraints penalize high $|\Delta_{G,1/8}|$, $|\Delta_{G,1/4}|$, $|\Delta_{H,1/8}|$ and $|\Delta_{H,1/4}|$.

Compas is a recidivism prediction dataset. Then Z=1 if a sample is African-American, Z=0 otherwise. Being labeled **positive is a disadvantage**, thus we chose the BPSN AUC constraint $AUC_{H_s^{(0)},G_s} = AUC_{H_s^{(1)},G_s}$.

Adult is a salary prediction (Y = 1 if above 50K\$) dataset. Then Z = 1 if a sample is male, Z = 0 if female. No obvious disadvantage from Y=1 or Y=-1, thus we chose $AUC_{H_{2}^{(0)},G_{2}^{(1)}}=AUC_{H_{2}^{(1)},G_{2}^{(0)}}$

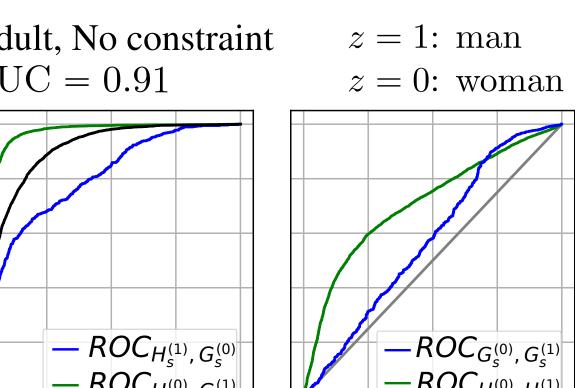






Compas, ROC constraint

AUC = 0.70



0.4

0.2

