
A Multiclass Classification Approach
to Label Ranking

Stephan Clémençon2 Robin Vogel1,2

1 IDEMIA, 2 Télécom Paris

24/03/2020

1



Outline

Introduction

Label Ranking as Ranking Median Regression

Solving Label Ranking with One-vs-One

Conclusion

2



Introduction

[Krizhevsky et al., 2012]

Classification:
Introduce a random pair (X, Y) ∼ P,
and predict a label Y ∈ Y = {1, . . . ,K},
from the features X ∈ X = Rq with q ≥ 1,
with a classifier g : X → Y from a family G.

For hard problems, one returns a list of themost likely labels
for an observation x ∈ X , which concerns many applications.
e.g. biometrics, search engines, . . .

One o�en uses intermediate values of a classification model,
to derive an ordering onY , e.g. so�max probabilities,
evaluates it with a performance indicator, e.g. precision at top-k.

Question: How to explicitly learn ordered labels from classif. data ?
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From classification to label ranking

Introduce the posterior probabilities η(x) := (η1(x), . . . , ηK(x)),
with ηk(x) := P{Y = k|X = x}, and µ the distribution of X,
then (µ, η) characterizes P.

The classification loss writes: L(g) := P{g(X) 6= Y},
and its Bayes classifier g∗ writes: g∗(x) := arg max

k∈{1,...,K}
ηk(x).

Tasks and targets: by order of di�iculty:
· Classification: the maximum of the ηk(x)’s, in {1, . . .K}.
· Label Ranking (LR): a decreasing order of η(x), inSK .
· Conditional density estimation: the vector η(x), inRK .

For x ∈ X , introduce σ∗x ∈ SK , s.t.:
ησ∗−1x (1) > ησ∗−1x (2) > · · · > ησ∗−1x (K),

then g∗(x) = σ∗−1x (1).
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Our contributions

LR is related to Ranking Median Regression (RMR). We provide:

· A description of the relationship between RMR and LR,

· A rationale on the one-vs-one (OVO) approach for LR,

· Fast convergence proofs for the OVO approach to LR,

· As a corollary, the first generalization bound on an OVO classifier,

· and a learning bound on the top-k error.
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Label Ranking
Label Ranking: Choose a ranking rule s : X → SK that minimizes:

R(s) := E[d(s(X), σ∗X)],

where d : SK ×SK → R+ symmetric and d(σ, σ) = 0, ∀σ ∈ SK .
It is di�erent from classif., unless d(σ, σ′) = I{σ−1(1) 6= σ

′−1(1)}.

Many sensible candidates for d(σ, σ′), e.g.:
· the error: I{σ 6= σ′},
· the Hamming distance:

∑K
k=1 I{σ(k) 6= σ′(k)},

· the Kendall τ distance dτ :
∑

i<j I{(σ(i)− σ(j))(σ′(i)− σ′(j)) < 0},

Results on I{σ 6= σ′} can be generalized to most distances, since:

d(σ, σ′) ≤ max
τ,τ ′∈S2

K

d(τ, τ ′)× I{σ 6= σ′}.

LR di�ers from RMR by assumptions on σ∗X and available data.
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Ranking median regression (RMR) (1/2)
Rankingmedian regression (RMR):
Given a random pair (X,Σ) ∼ P, predict a permutationΣ ∈ SK ,
from X ∈ X , with a ranking rule s : X → SK , selected in a family S .
See e.g.[Vembu and Gärtner, 2010, Tsoumakas et al., 2009].

In practice, one seeks to find s that nearly minimizes the risk:
R(s) := E[d(s(X),Σ)]. (1)

Introduce pi,j(x) = P{Σ(i) < Σ(j) | X = x} for 1 ≤ i < j ≤ K.

Assumption 1 (Strict Stochastic Transitivity (SST))
For all x ∈ Rq, we have: ∀(i, k, l) ∈ {1, . . . ,K}3, pi,j(x) 6= 1/2 and

pi,j(x) > 1/2 and pj,k(x) > 1/2 ⇒ pi,k(x) > 1/2.

Under Assumption 1 when d = dτ , the minimizer of Eq. (1) is s∗X ,
with:

s∗X(k) := 1+
∑
l 6=k

I{pk,l(X) < 1/2} for any k ∈ {1, . . . ,K}.
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Ranking median regression (RMR) (2/2)

Under a complexity assumption on S , with n the size of the sample,
i.e. the number of i.i.d. observations of P, one can derive
generalization bounds in O(n−1/2). [Clémençon et al., 2018].

Bounds in O(n−1) are derived with an additional noise assumption:

Assumption 2 (Noise condition)
We have:

H = ess inf min
i<j
|pi,j(X)− 1/2| > 0.

Assumption 2 resemblesMassart’s condition for classification.

Under this condition, guarantees on the risk imply guarantees
for the probability of error, since:

PX {s(X) 6= s∗X} ≤ (1/H)× (R(s)− R(s∗X)).
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LR as RMR (1/2)
LR: Label Y and predict ranking σ∗X ,
RMR: OrderingΣ and predict ranking s∗X .

→ Need to model the relationship between Y andΣ.

Definition 3 (Conditional Bradley-Terry-Luce-Plackett (BTLP))
The conditional distribution ofΣ−1 given X is defined by recursion:
Given a hidden preference vectorw(X) = (w1(X), . . . ,wK(X)),
set S1 := {1, . . . ,K}, Sk := S1 \ {Σ−1(1), . . . ,Σ−1(k − 1)} and:

Σ−1(k) ∼M

(
1,

{
wl(X)∑

m∈Sk wm(X)

∣∣∣ l ∈ Sk
})

,

withM(n, p) is the multinomial dist. We writeΣ ∼ BTLP(w(X)).

Point of view for LR:
RMR whereΣ follows a BTLPmodel with pref. vector η,
and we observe the partial information Y = Σ−1(1).
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LR as RMR (2/2)

Lemma 4
Let (X, Y) a random pair on a probability space (Ω,A,P).
Onemay build a r.v. Σ ∈ SK ,Σ ∼ BTLP(η(X)) and Y = Σ−1(1) a.s.

Under this model:
pk,l(X) = P{Σ(k) < Σ(l) | X} =

ηk(X)

ηk(X) + ηl(X)
=: ηk,l(X),

hence, SST is satisfied as soon as the ηk(X)’s are distinct.
Our knowledge of RMR implies:

σ∗X(k) = 1+
∑
l 6=k

I{ηk,l(X) < 1/2},

which rewrites with Bayes classifiers g∗k,l(x) := 2I{ηk,l(x) ≥ 1/2}− 1
for the problem of separating class k from l.

Other approaches to RMR with partial information:
[Korba et al., 2018, Brinker and Hüllermeier, 2019].
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One-Versus-One for classification

Many algorithms are tailored for binary classification, i.e. SVMs.

The One-vs-One (OVO) approach extends them tomulticlass classif.,
by running them K(K − 1)/2 times to separate l from k for any k < l,
and output the one which won the most duels,
see e.g. [Allwein et al., 2000, Wu et al., 2004].

A justification for OVO is that g∗(x) = arg max
k∈{1,...,K}

N∗k(x), with:

N∗k(x) =
∑
l<k

I
{
g∗l,k(x) = +1

}
+
∑
k<l

I
{
g∗k,l(x) = −1

}
.

Our knowledge of the relationship between RMR and LR gives:

σ∗X(k) = 1+
∑
l 6=k

I{g∗k,l(X) = −1}.

which is related to the Copeland score, see [Copeland, 1951].
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One-Versus-One for Label Ranking (1/2)
LetDn = {(Xi, Yi)}ni=1

i.i.d.∼ P and Yk,l,i = I{Yi = l} − I{Yi = k},
for any k < l compute a minimizer ĝk,l of the empirical risk over G:

L̂k,l(g) :=
1

nk + nl

∑
i:Yi∈{k,l}

I
{
g(Xi) 6= Yk,l,i

}
,

approximates Lk,l(g) := P{g(X) 6= Yk,l | Y ∈ {k, l}}, L∗k,l := Lk,l(g∗k,l).

Proposition 5
Under the assumptions:
· G has finite VC-dimension V,
· there exists ε > 0 s.t. for all k 6= l and x ∈ X , ηk(x) + ηl(x) > ε,
· there exists α ∈ [0, 1] and B > 0, s.t.: for all k 6= l and t ≥ 0:

P
{
|2ηk,l(X)− 1| < t

}
≤ Bt

α
1−α .

W.p.≥ 1− δ,
Lk,l(ĝk,l)− L∗k,l ≤ 2

(
inf
g∈G

Lk,l(g)− L∗k,l
)

+ rn(δ),

with rn(δ) = O(n−
1

2−α ).
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One-Versus-One for Label Ranking (2/2)

Introduce the scoring rule ŝ(X)(k) = 1+
∑

k 6=l I{ĝk,l(X) = −1},
with ŝ(X) = σ̂X , the union bound implies that:

P{σ̂X 6= σ∗X} ≤
∑
k<l

P
{
ĝk,l(X) 6= g∗k,l(X)

}
. (2)

Eq. (2) and Proposition 5 imply guarantees for LR.

Theorem 6
Under the same assumptions as those of Proposition 5,
for all δ ∈ (0, 1) and n ≥ n0(δ, α, ε,B, V), w.p.≥ 1− δ,

P{σ̂X 6= σ∗X} ≤
β

ε

(∑
k<l

2
(

inf
g∈G

Lk,l(g)− L∗k,l
)α

+

(
K
2

)
rαn

(
δ(K
2

))) .
Theorem 6 gives a generalization bound in O(n−

α
2−α ),

e.g. α = 1/2 gives O(n−
1
3 ) versus O(n−

2
3 ) for the usual O(n−

1
2−α ).
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Toy example
SetX = [0, 1], in two settings: noisy and separated (see η’s below),
we plot the expected dτ between σ̂X and σ∗X over 100 simulations,
as a function of n.
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Separated setting: α = 0.8
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Guarantees with OVO for top-k and classification
The top-k loss writes `k(y, σ) = I{y /∈ {σ−1(1), . . . , σ−1(k)}},
hence the top-k risk of the ranking rule s : Rq → SK is:

Wk(s) = E [`k(Y, s(X))] .

IntroduceW∗k = mins∈S Wk(s), then we have the following result:

Proposition 7
Let k ∈ {1, . . . ,K}, then W∗k = Wk(σ

∗
X).

Under the same assumptions as those of Proposition 5,
for all δ ∈ (0, 1) and n ≥ n0(δ, α, ε,B, V):

Wk(σ̂X)−W∗k ≤
β

ε
CK,k

(
2max
m6=l

(
inf
g∈G

Ll,m(g)− L∗l,m
)α

+ rαn

(
δ(K
2

))) .
The proof relies on: Wk(s)−W∗k ≤ PX {Topk(σ̂X) 6= Topk(σ∗X)}.

It implies, w/ k = 1, guarantees for the OVO classif ḡ(X) := σ̂X
−1(1).
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Conclusion

Main contributions:

·We derived a theory for solving label ranking with classif. data,

· and incidentally prove learning bounds for the OVO classifier.

Future work:

One could study the optimization of other accuracy measures,
such as ones that include the notion of scoring function.
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Thank you !
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