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TreeRank is a general approach to ranking,
see [Clemencon and Vayatis, 2009].

Similarity learning (SL) algo. are evaluated
by ranking criterions in applications,
e.g. face recognition,
see [Grother and Ngan, 2014].

TreeRank can be adapted for SL,
and its results using U-statistics theory.
Guarantees in sup norm in ROC space.

TreeRank’s competitiveness on:
· the expressivity of a proposal set family,
·mitigating overfitting.
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MOTIVATION
Biometric identification =
checks correspondance of two measurements (x, x′).

Given a similarity s and a threshold t,

(x, x′) is a match ⇔ s(x, x′) > t. (1)

The ROC curve of s gives the true positive rate
(TPR) given the false positive rate (FPR) associated
to eq. (1) for all thresholds t ∈ R.

An usual approach is to optimize the Area under
the ROCs curve (AUC) of the similarity function s.

Biometric systems are deployed for a fixed, low FPR,
which is hard to optimize in practice (see [1]).

CONTRIBUTIONS
· Extension of TreeRank (see [2]) that learns a
symmetric similarity function which optimizes the
ROC curve for similarity ranking (see [1]).

· Statistical guarantees in ‖·‖∞ in the ROC space.

· Empirical illustration on synthetic data.

· Trials on real data.

SYNTHETIC EXPERIMENTS
We generate data with a random tree of depth Dgt

and fix X = R3, δ = 0.01, ntest = 100, 000 and
ntrain = 150 · (5/4)D

2
gt , TreeRank outputs sD.

Results feature 95% CI’s based on 400 runs.

Class asymmetry

p+ D1(sD, s
∗) D∞(sD, s

∗)

0.5 0.07(±0.07) 0.30(±0.07)
10−1 0.08(±0.08) 0.31(±0.08)
10−3 0.42(±0.17) 0.75(±0.17)

2 · 10−4 0.45(±0.08) 0.81(±0.08)

Parameters: D = Dgt = 3.

Model bias

D D1(sD, s
∗) D∞(sD, s

∗)
1 0.21(±0.13) 0.65(±0.13)
2 0.11(±0.10) 0.43(±0.10)
3 0.07(±0.07) 0.30(±0.07)
8 0.06(±0.06) 0.28(±0.06)

Parameters: Dgt = 3, p = 0.5.

This illustrate two factors impairing generalization:
· pronounced class asymmetry,
· underspecified models.

REAL DATA EXPERIMENTS
We try validating our model by learning similarities
on MNIST, reduced by PCA. We test three models:

· A linear metric learning algorithm: LMNN [3],
· A simple metric on a neural network encoding,
trained for classification,
· Similarity TreeRank with decision stumps as A.

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

MNIST performances

LMNN
Neural Network
Ranking Forest
random

Conclusions:
TreeRank with decision stumps is limited.
→A is not expressive enough ?
Future work: Treerank with neural networks asA.

PRELIMINARIES
Classification setting. Assume (X,Y ) ∼ P , with:

• Y ∈ {1, . . . ,K} the output label,

• X ∈ X ⊂ Rd the input random variable.

Similarity learning. Select similarity function S s.t.

the larger S(X,X ′) the higher P{Y = Y ′ | X,X ′},

with (X,Y ) ⊥ (X ′, Y ′) ∼ P .

Optimal similarities S∗ are increasing transforms of:

η(x, x′) = P{Y = Y ′ | (X,X ′) = (x, x′)}.

The accuracy of any s ∈ S can be measured by:

dp(s, s
∗) = ‖ROCs − ROC∗‖p,

where s∗ ∈ S∗ and p ∈ [1,+∞].
With p = 1, dp measures the AUC difference.

Given i.i.d. copies Dn = {(Xi, Yi)}ni=1 of (X,Y ),
one wants to rank the dependent pairs

{((Xi, Xj), Zi,j) : 1 ≤ i < j ≤ n} .

TreeRank (see [2].) Recursive technique that builds
a piecewise constant score sDn for bipartite ranking.

Bipartite ranking considers data {(Xi, Yi)}ni=1, i.i.d.
copies of (X,Y ) ∈ X × {−1,+1}.

TreeRank splits the input space recursively for
weighted classif. problems with a class A ⊂ P(X ).

Under assumptions on the distribution and A, [2]
(Corollary 16 therein), states that, given a tree of
depth D = Dn ∼

n→∞
log(
√
n), ∀δ > 0,∃λ s. t.,

w.p. ≥ 1− δ, ∀n ∈ N, for i ∈ {1,+∞},

di(sDn
, s∗) ≤ exp(−λ

√
log n). (2)

SIMILARITY TREERANK
For Fσ(C), σ ∈ {−, +} and C ⊂ X ×X , introduce :

F̂σ,n(C) =
1

nσ

∑
i<j

I{(Xi, Xj) ∈ C, Zi,j = σ1},

with nσ = (2/(n(n− 1)))
∑
i<j I{Zi,j = σ1}.

The F̂σ,n’s are not averages of i.i.d. observations, but
ratios of averages of pairs, i.e. ratios of U -statistics,
see [1].

Input. Maximal depthD ≥ 1, classA of measurable
symmetric subsets of X × X , training dataset Dn.

1. (INITIALIZATION.) Set C0,0 = X × X ,
αd,0 = βd,0 = 0 and αd,2d = βd,2d = 1 for d ≥ 0.

2. (ITERATIONS.)
For d = 0, . . . , D − 1 and k = 0, . . . , 2d − 1:

a) (OPTIMIZATION STEP.)
Set the entropic measure:

Λd,k+1(C) =(αd,k+1 − αd,k)F̂+,n(C)

− (βd,k+1 − βd,k)F̂−,n(C) .

Find the best subset Cd+1,2k of the cell Cd,k in
the AUC sense:

Cd+1,2k = argmaxC∈A, C⊂Cd,k Λ̂d,k+1(C) .

Then, set Cd+1,2k+1 = Cd,k \ Cd+1,2k.

b) (UPDATE.) Set

αd+1,2k+1 = αd,k + F̂−,n(Cd+1,2k),

βd+1,2k+1 = βd,k + F̂+,n(Cd+1,2k),

and αd+1,2k+2 = αd,k+1, βd+1,2k+2 = βd,k+1 .

3. (OUTPUT.) After D iterations,
get the piecewise constant similarity function:

sD(x, x′) =

2D−1∑
k=0

(2D − k) I{(x, x′) ∈ CD,k}.

GUARANTEES
The theoretical guarantees of eq. (2) for bipartite
ranking remain valid for similarity learning.

Assumption for Theorem 1 to hold:

• the feature space X is bounded,

• α 7→ ROC∗(α) is twice differentiable with a
bounded first order derivative,

• the class A is intersection stable,
i.e. ∀(C, C′) ∈ A2, C ∩ C′ ∈ A,

• the classA has finite VC dimension V < +∞,

• {(x, x′) ∈ X 2 : η(x, x′) ≥ q} ∈ A for all
values of q ∈ [0, 1].

Theorem 1.
Choose D = Dn so that Dn ∼

n→∞

√
log n. Then,

for all δ > 0, there exists a constant λ s.t., with
probability at least 1− δ, we have for all n ≥ 2:

d∞(sDn
, s∗) ≤ exp(−λ

√
log n).
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