On Tree-based Methods for Similarity Learning

Stéphan Clémençon¹ and Robin Vogel^{1,2} - ¹Télécom Paris, ²IDEMIA - published at LOD 2019

TreeRank is a **general approach to ranking**, see [Clemencon and Vayatis, 2009].

Similarity learning (SL) algo. are evaluated by **ranking criterions** in applications,

e.g. face recognition, see [Grother and Ngan, 2014].

TreeRank can be adapted for **SL**, and its results using *U*-**statistics theory**. Guarantees in sup norm in ROC space.

TreeRank's competitiveness on:

- · the expressivity of a proposal set family,
- · mitigating overfitting.

On Tree-based Methods for Similarity Learning

Stéphan Clémençon¹ and Robin Vogel^{1,2} ¹ **Télécom Paris,** ² **IDEMIA**

MOTIVATION

Biometric identification =

checks correspondance of two measurements (x, x').

Given a similarity s and a threshold t,

(x, x') is a match $\Leftrightarrow s(x, x') > t$. (1)

The ROC curve of s gives the **true positive rate** (TPR) given the **false positive rate** (FPR) associated to eq. (1) for all thresholds $t \in \mathbb{R}$.

An usual approach is to optimize the Area under the ROC_s curve (AUC) of the similarity function s.

SIMILARITY TREERANK

For $F_{\sigma}(\mathcal{C}), \sigma \in \{-, +\}$ and $\mathcal{C} \subset \mathcal{X} \times \mathcal{X}$, introduce :

$$\widehat{F}_{\sigma,n}(\mathcal{C}) = \frac{1}{n_{\sigma}} \sum_{i < j} \mathbb{I}\{(X_i, X_j) \in \mathcal{C}, \ Z_{i,j} = \sigma 1\},\$$

with $n_{\sigma} = (2/(n(n-1))) \sum_{i < j} \mathbb{I}\{Z_{i,j} = \sigma 1\}.$

The $F_{\sigma,n}$'s are not averages of i.i.d. observations, but ratios of averages of pairs, i.e. ratios of U-statistics, see [1].

Input. Maximal depth $D \ge 1$, class \mathcal{A} of measurable

SYNTHETIC EXPERIMENTS

We generate data with a random tree of depth D_{at} and fix $\mathcal{X} = \mathbb{R}^3$, $\delta = 0.01$, $n_{\text{test}} = 100,000$ and $n_{\text{train}} = 150 \cdot (5/4)^{D_{gt}^2}$, TreeRank outputs s_D .

Results feature 95% CI's based on 400 runs.

Class asymmetry		
p_+	$D_1(s_D, s^*)$	$D_{\infty}(s_D, s^*)$
0.5	$0.07(\pm 0.07)$	$0.30(\pm 0.07)$
10^{-1}	$0.08(\pm 0.08)$	$0.31(\pm 0.08)$
10^{-3}	$0.42(\pm 0.17)$	$0.75(\pm 0.17)$
$2 \cdot 10^{-4}$	$0.45(\pm 0.08)$	$0.81(\pm 0.08)$

Biometric systems are deployed for a fixed, low **FPR**, which is hard to optimize in practice (see [1]).

CONTRIBUTIONS

• Extension of TreeRank (see [2]) that learns a symmetric similarity function which optimizes the ROC curve for similarity ranking (see [1]).

• Statistical guarantees in $\|\cdot\|_{\infty}$ in the ROC space.

Empirical illustration on synthetic data.

· Trials on real data.

PRELIMINARIES

Classification setting. Assume $(X, Y) \sim P$, with:

• $Y \in \{1, \ldots, K\}$ the output label,

• $X \in \mathcal{X} \subset \mathbb{R}^d$ the input random variable.

symmetric subsets of $\mathcal{X} \times \mathcal{X}$, training dataset \mathcal{D}_n .

(INITIALIZATION.) Set $C_{0,0} = \mathcal{X} \times \mathcal{X}$, $\alpha_{d,0} = \beta_{d,0} = 0$ and $\alpha_{d,2^d} = \beta_{d,2^d} = 1$ for $d \ge 0$.

2. (ITERATIONS.) For $d = 0, \ldots, D - 1$ and $k = 0, \ldots, 2^d - 1$:

> a) (OPTIMIZATION STEP.) Set the **entropic measure**:

 $\Lambda_{d,k+1}(\mathcal{C}) = (\alpha_{d,k+1} - \alpha_{d,k})\widehat{F}_{+,n}(\mathcal{C})$ $-(\beta_{d,k+1}-\beta_{d,k})\widehat{F}_{-,n}(\mathcal{C}).$

Find the best subset $C_{d+1,2k}$ of the cell $C_{d,k}$ in the AUC sense:

 $\mathcal{C}_{d+1,2k} = \operatorname{argmax}_{\mathcal{C} \in \mathcal{A}, \ \mathcal{C} \subset \mathcal{C}_{d,k}} \widehat{\Lambda}_{d,k+1}(\mathcal{C}) .$

Then, set $C_{d+1,2k+1} = C_{d,k} \setminus C_{d+1,2k}$.

b) (UPDATE.) Set

Parameters: $D = D_{qt} = 3$.

Model bias

D	$D_1(s_D, s^*)$	$D_{\infty}(s_D, s^*)$
1	$0.21(\pm 0.13)$	$0.65(\pm 0.13)$
2	$0.11(\pm 0.10)$	$0.43(\pm 0.10)$
3	$0.07 (\pm 0.07)$	$0.30(\pm 0.07)$
8	$0.06(\pm 0.06)$	$0.28(\pm 0.06)$

Parameters: $D_{qt} = 3, p = 0.5$.

This illustrate two factors impairing generalization: · pronounced class asymmetry, • underspecified models.

REAL DATA EXPERIMENTS

We try validating our model by learning similarities on MNIST, reduced by PCA. We test three models:

• A linear metric learning algorithm: LMNN [3],

Similarity learning. Select similarity function S s.t. the larger S(X, X') the higher $\mathbb{P}\{Y = Y' \mid X, X'\}$, with $(X, Y) \perp (X', Y') \sim P$.

Optimal similarities S^* are increasing transforms of:

$$\eta(x, x') = \mathbb{P}\{Y = Y' \mid (X, X') = (x, x')\}.$$

The accuracy of any $s \in S$ can be measured by:

 $d_{p}(s, s^{*}) = \|\text{ROC}_{s} - \text{ROC}^{*}\|_{p},$

where $s^* \in \mathcal{S}^*$ and $p \in [1, +\infty]$. With p = 1, d_p measures the AUC difference.

Given i.i.d. copies $\mathcal{D}_n = \{(X_i, Y_i)\}_{i=1}^n$ of (X, Y), one wants to *rank the dependent pairs*

 $\{((X_i, X_j), Z_{i,j}) : 1 \le i < j \le n\}.$

 $\alpha_{d+1,2k+1} = \alpha_{d,k} + \widehat{F}_{-,n}(\mathcal{C}_{d+1,2k}),$ $\beta_{d+1,2k+1} = \beta_{d,k} + \widehat{F}_{+,n}(\mathcal{C}_{d+1,2k}),$ and $\alpha_{d+1,2k+2} = \alpha_{d,k+1}, \ \beta_{d+1,2k+2} = \beta_{d,k+1}$.

3. (OUTPUT.) After D iterations, get the **piecewise constant similarity** function:

$$s_D(x, x') = \sum_{k=0}^{2^D - 1} (2^D - k) \, \mathbb{I}\{(x, x') \in \mathcal{C}_{D, k}\}.$$

GUARANTEES

The theoretical guarantees of eq. (2) for bipartite ranking remain valid for similarity learning.

Assumption for Theorem 1 to hold:

- the feature space \mathcal{X} is bounded,
- $\alpha \mapsto ROC^*(\alpha)$ is twice differentiable with a bounded first order derivative,

- · A simple metric on a **neural network encoding**, trained for classification,
- Similarity TreeRank with decision stumps as \mathcal{A} .

Conclusions:

TreeRank with decision stumps is limited. $\rightarrow \mathcal{A}$ is not expressive enough ? Future work: **Treerank with neural networks** as \mathcal{A} .

TreeRank (see [2].) Recursive technique that builds a piecewise constant score s_{D_n} for *bipartite ranking*.

Bipartite ranking considers data $\{(X_i, Y_i)\}_{i=1}^n$, i.i.d. copies of $(X, Y) \in \mathcal{X} \times \{-1, +1\}$.

TreeRank splits the input space recursively for weighted classif. problems with a class $\mathcal{A} \subset \mathcal{P}(\mathcal{X})$.

Under assumptions on the distribution and \mathcal{A} , [2] (Corollary 16 therein), states that, given a tree of depth $D = D_n \sim \log(\sqrt{n}), \forall \delta > 0, \exists \lambda \text{ s. t.},$ w.p. $\geq 1 - \delta, \forall n \in \mathbb{N}, \text{ for } i \in \{1, +\infty\},\$

> $d_i(s_{D_n}, s^*) \le \exp(-\lambda \sqrt{\log n}).$ (2)

- the class \mathcal{A} is intersection stable, *i.e.* $\forall (\mathcal{C}, \mathcal{C}') \in \mathcal{A}^2, \mathcal{C} \cap \mathcal{C}' \in \mathcal{A},$
- the class \mathcal{A} has finite VC dimension $V < +\infty$,
- $\{(x, x') \in \mathcal{X}^2 : \eta(x, x') \geq q\} \in \mathcal{A}$ for all values of $q \in [0, 1]$.

Theorem 1. Choose $D = D_n$ so that $D_n \sim \sqrt{\log n}$. Then, for all $\delta > 0$, there exists a constant λ s.t., with probability at least $1 - \delta$, we have for all $n \ge 2$:

 $d_{\infty}(s_{D_n}, s^*) \le \exp(-\lambda \sqrt{\log n}).$

REFERENCES

[1] Robin Vogel, Aurélien Bellet, and Stéphan Clémençon. A probabilistic theory of supervised similarity learning for pointwise ROC curve optimization. In *ICML*, 2018.

- [2] Stéphan Clémençon and Nicolas Vayatis. Tree-based ranking methods. IEEE Transactions on Information *Theory*, 2009.
- [3] Kilian Q. Weinberger and Lawrence K. Saul. Distance Metric Learning for Large Margin Nearest Neighbor Classification. JMLR, 2009.