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TreeRank is a general approach to ranking,
see [Clemencon and Vayatis, 2009].

Similarity learning (SL) algo. are evaluated
by ranking criterions in applications,

e.g. face recognition,

see [Grother and Ngan, 2014].

False non-match rate (FNMR)

n = wn wa e \«‘m : ‘
False match rate (FMR)

TreeRank can be adapted for SL,

and its results using U-statistics theory.
Guarantees in sup norm in ROC space.

TreeRank’s competitiveness on:
- the expressivity of a proposal set family,
- mitigating overfitting.




On Tree-based Methods for Similarity Learning

12 1 Télécom Paris, * IDEMIA

TELECOM

{{)) IDEMIA

Paris

i XE

Stéphan Clémencon' and Robin Voge

SIMILARITY TREERANK SYNTHETIC EXPERIMENTS

For F,(C),c € {—, +}and C C X x X, introduce :

Biometric identification =
checks correspondance of two measurements (x, z’).

We generate data with a random tree of depth D,
and fix X = R>, § = 0.01, nes = 100,000 and

Given a similarity s and a threshold ¢,

(x,x") is amatch < s(z,2") > t.

(1)

The ROC curve of s gives the true positive rate
(TPR) given the false positive rate (FPR) associated

E, 0 (C) I{(X;, X; Z: = ol
n(C) = nz{ )€C, Z;j =ol},

7 1<

with n, = (2/(n(n — 1)) ¥, 1{Z:; = o1},

The F, ,,’s are not averages of 1.1.d. observations, but

Nirain = 190 - (5/4)D3t, TreeRank outputs sp.

Results feature 95% CI’s based on 400 runs.

Class asymmetry

ratios of averages of pairs, 1.e. ratios of U -statistics, % %
to eq. (1) for all thresholds ¢ € R. see [11. > P P+ Di(sp,s*)  Deo(sp,s”)
0.5 0.07(£0.07)  0.30(£0.07)
An usual approach is to optimize the Area under ¢ Maximal depth D > 1, class A of measurable 10~ 0.08(%0.08) 0.31(%0.08)
the ROC; curve (AUC) of the similarity function s. symmetric subsets of X' x X, training dataset D,,. 1073 0.42(£0.17) 0.75(=%0.17)
2-107%  0.45(£0.08) 0.81(£0.08)
Biometric systems are deployed for a fixed, low FPR, 1. (INITIALIZATION.) Set Cog = X X X. Parameters: D = D,, — 3
which 1s hard to optimize 1n practice (see [1]). ago = Bgo = 0and oy 00 = f3, 2d’: 1 ford > 0. ' J '
| | | | h Model bias
CONTRIBUTIONS % <1;ER18TIONS°;) o o D Di(sp,s*) Du(sp,s*)
ord=0, ..., D—1land k=0, ..., 2% — 1. i i
- Extension of TreeRank (see [2]) that learns a ; gﬁg:gigg 8 222:_8 igg
symmetric similarity function which optimizes the a) (OPTIMIZATION STEP.) X 0.07(:0.07) " 30(: yor
ROC curve for similarity ranking (see [1]). Set the entropic measure: q (): 06 (; (): 06) 0.28 (: 0.06)

— (g pg1 — g k) Fyn (C) Parameters: D, = 3, p = 0.5.

— Bar)EF_ . (C) .

Find the best subset Cg4 1 2 of the cell Cy  1n
the AUC sense:

. Statistical guarantees in ||-||, in the ROC space.

Agr+1(C)

— (Bd, k+1

- Empirical illustration on synthetic data. This 1llustrate two factors impairing generalization:

- pronounced class asymmetry,
- underspecified models.

- Trials on real data.

PRELIMINARIES

AN

Ca+1,26 = argmaxee 4 ccc, , Adr+1(C) -

REAL DATA EXPERIMENTS

We try validating our model by learning similarities
on MNIST, reduced by PCA. We test three models:

Classification setting. Assume (X,Y) ~ P, with:

Then, set Cia11.2k+1 = Cak \ Ca+1 .2k

e Y €{1,..., K} the output label,

b) (UPDATE.) Set

- A linear metric learning algorithm: LMNN [3],

- A simple metric on a neural network encoding,
trained for classification,

e X € X C R the input random variable. .
QAd41,2k+1 = Oq | T+ F—,n(cd—l—l,Qk)a
Similarity learning. Select similarity function S s.t.

= By + Fo n(C ,
/ . , , Parizett = Pk o Cata, k) - Similarity TreeRank with decision stumps as A.
the larger S(X, X") the higher P{Y =Y | X, X"}, and ag11 2k4+2 = Qd k+1, Bd+1.2k+2 = Bd k+1 -
with (X,Y) L (X", Y') ~ P. 3. (OUTPUT.) After D iterations, MNIST performances
get the plecewise constant similarity function: 1.0 -
Optimal similarities S* are increasing transforms of: i
2P 1
/ / / / A D / 0.8-
n(z,z') =P{Y =Y | (X, X') = (z,2))}. sp(z,2') = » (27 = k) I{(z,2) € Cpx}.
k=0
The accuracy of any s € § can be measured by: . 0-6-
o
d,(s,s*) = [|[ROC, — ROC*||,, GUARANTEES 0.4-
. ) The theoretical guarantees of eq. (2) for bipartite g— yvre
Wbere s €S and p € [1, +o0]. , ranking remain valid for similarity learning. 0.2 - — NeuralNetwork
With p = 1, d,, measures the AUC difference. .
—— Ranking Forest
Assumption for Theorem 1 to hold: i —— random
Given i.i.d. copies D,, = {(X;,Y;)}, of (X,Y), P >0 . . . . .
one wants to rank the dependent pairs e the feature space X’ is bounded, 00 02 04 . 06 08 10
(X5, X5),Zi5) 1 <i<j<mnj. e o — ROC*(«) is twice differentiable with a
bounded first order derivative, Conclusions:

TreeRank (see [2].) Recursive technique that builds
a piecewise constant score sp_ tor bipartite ranking.

TreeRank with decision stumps 1s limited.
— A is not expressive enough ?
Future work: Treerank with neural networks as A.

e the class A is intersection stable,

e. V(C, C") e A%,CNC € A,

Bipartite ranking considers data {(X;, ;) }7,, i.i.d.

e the class A has finite VC dimension V' < 400,
copiesof (X,Y) e X x {—1,+1}.
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e {(z,2') € X% : n(x,a’) > q} € A for all
TreeRank splits the input space recursively for values of ¢ € |0, 1].
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depth D = D,, ~ log(y/n),Vé > 0,3\ s. t.,

n—oo

wp. >1—9,VneN,forz € {1,400},

) < exp(—Ay/logn).

Theorem 1.
Choose D = D,, sothat D,, ~ +/logn. Then, 2]
n— oo
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) < exp(—Ay/logn).
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