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Chapter 1

Summary

1.1 Context

The thesis originates from a collaboration between the french grande école Télécom Paris and the
multinational company IDEMIA. Precisely, the project relies on a CIFRE contract (Industrial
Agreements for Training through Research), a type of contract introduced in 1981 by the french
government to strengthen the ties between research institutions and private companies. The
research work is thus supervised by both parties, which is made possible in our case by frequent
interactions.

Télécom Paris is one of the top French public institutions of higher education and research in
engineering in France, and is a member of the Institut Mines-Télécom (IMT) and the Institut
Polytechnique de Paris (IP Paris). The IP Paris is a public higher education and research
institution, that brings together five prestigious French engineering schools: Ecole Polytechnique,
ENSTA Paris, ENSAE Paris, Télécom Paris and Télécom SudParis. Under the auspices of
the Institute, they share their expertise to develop training programs of excellence and cutting-
edge research. The research involved in this thesis was done within the Signal, Statistics and
Learning (S2A) team of the Information Processing and Communication Laboratory (LTCI). The
academical supervision team consisted of Stephan Clémengon and Anne Sabourin, both members
of the S2A team, as well as Aurélien Bellet, researcher at INRIA (National Institute for Research
in Digital Science and Technology).

IDEMIA is the leading company in biometric identification and security, as well as secure
payments. The company is a merger of the companies Morpho and Oberthur Technologies, which
was achieved in 2017. Oberthur technologies was a dominant player in digital security solutions
for the mobile world, while Morpho was considered the worldwide leader of biometric recognition.
IDEMIA has the aim of converging technologies developed for the public sector (by the former
Morpho) and those for the private sector (by Oberthur Technologies). In the private sector, the
major customers of the company come from banking, telecom and connected objects. The thesis
started in 2017 with Safran Identity and Security (formerly Morpho) before the merger, back
when Morpho was a subsidiary of the large aeronautics and defense company Safran. Throughout
the thesis, Stéphane Gentric assumed the continued industrial supervision of this project. The
managers of the Advanced Machine Learning team: sequentially Julien Bohné, Anouar Mellakh
and Vincent Despiegel, contributed significantly to that supervision.

1.2 Introduction

Biometrics is the discipline of distinguishing individuals based on physical or behavioral attributes
such as fingerprints, face, irises and voice. In the modern world, biometrics has many essential
applications, such as border crossing, electronic commerce and welfare disbursement. While its
mainstream usage is recent, the discipline is not new. Indeed, in the late 19th century, the French
law enforcement officer Alphonse Bertillon proposed a personal identification system based on
the measurement of specific bony parts of the body (Jain et al., 2011).

15



Chapter 1. Summary 16

Today, the most widespread biometric measurement is fingerprint recognition, followed by face
and iris recognition. All of them rely on the acquisition of images of specific parts the body.
Hence, while biometrics is seen by many authors as a distinct field of science, its history and
development is tightly related with that of computer vision, the interdisciplinary scientific field
that seeks to enable computers to gain high-level understanding of digital images.

In the early 2010s, the performance of computer vision systems started to dramatically improve
(Goodfellow et al., 2016), due to the development of general-purpose computing on graphical
processing units (GPGPU). It enabled the widespread adoption of neural networks — statistical
models composed of layers that summarize information — as their training strongly benefits
from very fast matrix multiplication. Training neural networks consists in finding the parameters
of the network that minimize a loss function with gradient descent algorithms. Those modify
iteratively the network parameters, by adding a small quantity that is negatively proportional to
the gradient at each step. The growing interest for neural networks has fueled a huge corpus of
literature. Most papers propose a better architecture for the model, suggest an improvement of
the optimization method or introduce a better loss function for a particular use case.

Recent literature has proposed many loss functions for biometrics, built on the intuition that
a more stringent separation of identities in an embedding space leads to improvements in
performance (Wang and Deng, 2018). The flagship problem of biometrics is 1:1 verification, which
seeks to verify the identity of an individual by comparing a live measurement with reference
data using a similarity measure. For example, the entry of an individual to a restricted area can
require the conformity of the measurement with a personal identification card. Performance in 1:1
verification is evaluated using the ROC curve, a functional criterion that summarizes the quality
of a similarity measure. For a set of tests, the ROC curve gives all false acceptance and false
rejection rates attainable by thresholding the similarity. It is the golden standard for evaluating
score functions. In the thesis, we argue for using the bipartite ranking literature to design loss
functions for 1:1 verification, which is seen as scoring on pairs of observations. While both scoring
and pairwise learning are addressed in the literature, their simultaneous examination is new and
raises distinct challenges.

The recent dramatic improvements in accuracy of many machine learning applications foreshadow
the emergence of new markets, issued from the maturation of formerly very experimental
technologies. One such market is facial recognition, which has recorded, and is expected to
maintain, exponential growth. Its development brought media coverage about the potential
misuses and systemic biases of the technology, on top of the usual privacy concerns. In that context,
practitioners and governmental agencies have recorded differences in accuracy between ethnicities
in face recognition (Grother and Ngan, 2019). One common explanation is that available face
databases for training face recognition systems fail to represent the general population. The
performance discrepancy raises the broader issue of fairness, a common concern with automated
decisions that has received increasing attention in the recent machine learning literature (Barocas
et al., 2019). Some observers commented that predictive algorithms run the risk of being merely
“opinions embedded in mathematics”. In their view, practitioners should not focus on predictive
performance alone, but also enforce the conformity of their system with a set of moral values.
Biometrics is also concerned with fairness. Indeed, even when the representativeness of the
training database in terms of gender is accounted for, women still account for more false positives
than men, possibly due to societal norms regarding appearance. This may lead to systemic
discrimination, notably when considering systems that flag people of interest. In the thesis,
we first propose to correct biases using importance weights, which adjusts the distribution of
the training data. The correction covers several cases where train and test data do not match,
and assumes the availability of auxiliary information about their relationship. The level of
generality that we propose is new, and covers many important applications in biometrics. Then,
we propose to modify loss functions to incorporate explicitly fairness considerations when learning
a score for bipartite ranking. While fairness in classification has received a lot of attention, fair
bipartite ranking has not. Considering our scoring perspective on 1:1 verification, this work is an
intermediary step to explicitly incorporate fairness constraints in this biometric problem.

In general, many issues from the machine learning literature arise simultaneously in the design of
biometric systems. The objective of this thesis is to identify and address several of those from
the perspective of statistical machine learning, in the hope of providing security guarantees under
probabilistic assumptions, and proposing sensible solutions to biometric systems manufacturers.
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Notation Description

w.r.t. With respect to

s.t. Subject to

r.h.s. Right-hand side

Lh.s. Left-hand side

a.s. Almost-surely

r.v. Random variable

1.10.d. Independent and identically distributed
c.d.f. Cumulative distribution function
p.d.f. Probability density function

= Definition of a variable

\ Universal quantifier

X -Y Map of X to Y

AT Transpose of the matrix A

(%] Empty set

() Binomial coefficient

G, Permutation of {1,...,n}

AU B (resp. An B)
AAB

Set union (resp. intersection) between the sets A and B
Symmetric difference between the sets A and B

#A Cardinal of the set A

Ac Complementary of a set A

P(A) Set of all parts of a set A

c Set inclusion

I{-} Indicator function

Im(f) Image of the function f

sgn(-) Sign function, sgn(z) = 2I[{x > 0} — 1
log(+) Natural logarithm function

O(") “Big O“: Asymptotic order of a quantity

Probability of event
Expectation of a random variable

supp( ) Support of the distribution pu

X ~u The r.v. X follows the distribution p
JIXR% Product measure of p and v

O Dirac mass at point x

F Survival function for c.d.f. F, F=1—F
F1 Generalized inverse of a cadlag function
N (resp. R) Natural (resp. real) numbers

N* =N{0}, Ry ={zeR|z>0}, R} =R,\{0}

Table 1.1: Summary of notations.

In that regard, the usual statistical machine learning literature deals with simple problems,
such as classification or regression (Boucheron et al., 2005). However, the problems tackled in
biometrics involve both pairwise learning and a functional criterion, and thus require a specific
analysis.

Chapter outline. The current chapter summarizes the contributions of the main parts II and
III of the thesis, and skips the remaining part (Part I). Part I is in the thesis for clarity reasons
and only contains technical preliminaries to the theoretical results of the other parts. The current
chapter is organized as follows: firstly, Section 1.3 extends on the ideas presented in the short
introduction above and provides a detailed outline for the thesis. Secondly, Section 1.4 focuses
on Part IT and discusses similarity ranking. Thirdly, Section 1.5 summarizes the contributions
of Part IIT on the broad topic of reliable machine learning. Finally, Section 1.6 details the
perspectives of the thesis.

Section 1.3 is a developed introduction that focuses on important aspects of biometrics that are
addressed in the machine learning literature. More precisely, it first presents the relationship
between biometrics and metric learning, as well as the impact of deep learning on both fields.
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It then delves into the nature of bias in facial recognition, and details potential dangers of bias
through the lens of algorithmic fairness.

Section 1.4 is a short summary of Part II. It focuses on the idea of considering similarity learning
as scoring on a product space. We name this view similarity ranking. In that regard, it begins
with theoretical guarantees for that problem. Then, it proposes strategies with guaranteed
statistical accuracy to reduce the computational complexity of similarity ranking, and ends with
several practical, gradient-based, approaches.

Section 1.5 is a short summary of Part III, which deals with reliability in machine learning. As
such, it first proposes a strategy to predict an ordered list of probable classes from multiclass
classification data, instead of focusing on classification precision alone. Then, it gives strategies to
deal with the lack of representativeness of databases. It ends with a proposal to enforce fairness
for the scoring problem.

Section 1.6 presents the perspectives of the thesis. Specifically, it stresses the importance of
practical illustrations of this work for biometric practitioners, and discusses several possible
extensions of our analyses.

The notations adopted throughout the thesis are summarized in Table 12.1.

1.3 Recent Challenges in Biometrics

The recent advances in deep learning have brought rapid changes to the state-of-the-art in
biometrics. In that regard, the new subfield of deep learning metric has proposed many derivable
losses, but none of them relate to the ranking-based evaluation of biometrics systems. At the same
time, the advances have stirred public debate about biometric technologies, and in particular on
face recognition. While most issues concern the usage of facial recognition algorithms, one is its
recently-measured racial bias. The machine learning research community can propose technical
solutions for that problem.

1.3.1 Introduction to Biometrics

Societal value. Biometrics responds to the need to establish the identity of a person with
high confidence. It has become crucial in the modern world, since one interact with an always
increasing number of people. However, its roots can be traced as early as the late 19th century,
with the first recorded uses of fingerprints for identification (Jain et al., 2011, Section 1.8). Today,
biometrics are widely used in forensics and other governmental applications, as well as by various
industries, such as the banking sector. One example of large-scale biometrics application is the
Aadhaar project, managed by the Unique IDentification Authority of India (UIDAI), which has
assigned national identification numbers and recorded the biometrics (irises, faces and fingerprints)
of over one billion people (Jain et al., 2011, Section 1.6).

Formal objectives. The objective of biometric systems is to compare two measurements (z, ')
in an input space X, e.g. two fingerprints or two faces, and to decide whether both of them
originate from the same individual. It is generally done by means of a pairwise similarity function
s: X x X — R,, that quantifies the likelihood that x and 2’ originate from the same person. The
decision is taken by thresholding the similarity value, 4.e. the pair (x,2’) is a match if s(z, 2’) > ¢,
where t is a threshold in R,. Two flagship problems can be identified in biometrics: verification
and identification (Jain et al., 2011, Section 1.3). The verification problem is also referred to as 1:1
matching or 1:1 authentication. It is illustrated by the use case of border crossing, where an official
compares a document z’ with a live measurement x. As such, it consists in making a decision
on a pair (z,2z'). On the other hand, identification is illustrated by the use case of automatic
surveillance, where a live measurement x is compared to a database. Precisely, it consists in
finding the existence of a match to x in a database of N € N observations Dy = {z;}Y; < X.
If a match exists, it needs to return the relevant elements in Dy . Identification is also referred
to as 1:N matching or 1:N authentication. The number of enlisted people N can be large, for
example in the millions.

Operational steps. To compare an observation x with a large database Dy, one needs the



19 1.3. Recent Challenges in Biometrics

capacity to match quickly low-memory representations of elements in X'. It requires the derivation
of efficient intermediary representations of the input data. Biometric systems can usually be
split in three distinct processes: 1) the acquisition of the input data, called enrollment, 2) the
feature extraction, sometimes referred to as the encoding of the data, 3) and the matching of
the encodings. See Jain et al. (2011) (Section 1.2) for more details. In the context of fingerprint
recognition, the enrollment phase covers the acquisition of the raw input, post-processing steps,
as well as quality verifications on the final image. Feature extraction consists in applying usual
computer vision techniques, followed by domain-specific techniques to extract specific points
in the fingerprint image. For example, Gabor filters (Szeliski, 2011, Section 3.4.1) are used
to derive ridge orientation maps (Jain et al., 2011, Chapter 2) from raw fingerprint images.
Characteristic points called minutiae are then extracted from that intermediate representation.
Finally, matching relies on the evaluation of a distance between the point clouds of two images.
We refer to Section 2 of Jain et al. (2011) for more details.

Feature extraction. The module that has received the most attention in biometrics research
is the feature extraction module. For example, research in automatic fingerprint recognition
has dedicated many man-hours to finding as much discriminative information as possible in
the images. In the context of facial recognition, the feature extraction part was first based on
EigenFaces (Turk and Pentland, 1991), an application of the principal component analysis (PCA)
to natural images of faces. Then, it combined common computer vision descriptors — such as
Local Binary Patterns (LBP) and Scale-Invariant Feature Transform (SIFT) image descriptors —
with dimensionality reduction techniques. Finally, it now relies on end-to-end — models that
perform a task using raw input — deep convolutional neural networks, a type of neural network
well suited for images (Wang and Deng, 2018).

Metric learning algorithms serve to train the feature extraction module. Recently, the advent
of deep learning algorithms has completely shifted the focus of biometric researchers from a
combination of domain-specific feature extraction and linear metric learning, to end-to-end deep
metric learning. Researchers in biometrics thus have to follow closely recent developments in
machine learning — and especially deep learning — to stay competitive.

1.3.2 Deep Metric Learning for Biometrics

Metric learning or similarity learning is the machine learning problem that that seeks to learns
how similar two objects are. We refer to Bellet et al. (2015a) for a survey. In biometrics, the
supervision for those algorithms originates from a database of n images {z;}7; < X, with each
image x; having an associated identity y; € {1,..., K} with K <n and (n, K) € N2

Linear metric learning. The first metric learning algorithms and a large part of the literature
focus on linear metric learning. It refers to distances or similarity functions s : X x X — R
that are linear functions of their inputs. Those mainly rely on the use of a Mahalanobis distance
— a distance function R? x R? — R, for d € N parameterized by a positive semidefinite matrix
M e R4 — with a few other linear metric learning methods using other combinations of M
and the input z,z’. The Mahalanobis distance dj; between the points x and 2’ satisfies:

dy(z,2') = \/(1’ —a)TM(x — ).

The Cholesky decomposition (Petersen and Pedersen, 2008, Section 5.5.1) implies that one can
write M = LL", where L is a lower triangular matrix. This result justifies seeing Mahalanobis
distances as computing a simple Euclidean distance over a transformation of the inputs, since
dy(x,2") = |Lz — La'||,, where ||-||, is the standard Euclidean distance. Notable approaches for
learning Mahalanobis distances include the Mahalanobis Metric for Clustering (MMC) algorithm
in 2002 (Xing et al., 2002), the Neighborhood Component Analysis (NCA) algorithm in 2004
(Goldberger et al., 2004), and the Large Margin Nearest Neighbor (LMNN) algorithm in 2009
(Weinberger and Saul, 2009). Several authors have considered the extension of linear metric
learning algorithms. For instance, they proposed the kernelization of linear metric learning
methods, as well as the use of local linear metrics (Bellet et al., 2015a, Section 5). These
extensions turned out to be useful for facial recognition practitioners. For exemple, Bohné et al.
(2014) considered applying the algorithm MM-LMNN (Weinberger and Saul, 2009), which learns
a local linear metric, to facial recognition.
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Deep metric learning (DML). Due to the development of general-purpose computing on
graphical processing units (GPGPU), the training and use of very deep neural networks became
practical. It has had the effect of dramatically improving the performance of computer vision,
notably for the task of large-scale classification on the challenge ILSVRC (ImageNet Large Scale
Visual Recognition Challenge). The most salient breakthrough for that challenge happened in
2012 and is presented in Krizhevsky et al. (2012). Results with deep networks led to important
advances in face recognition as early as 2014 (Taigman et al., 2014). Deep facial recognition
encodes raw data z to a vector e(x), where e : X — R is a non-linear function and corresponds
to the output of a neural network. Then, a simple distance is computed between e(x) and
e(z') to decide whether « and 2’ match. The encoding e is optimized by gradient descent to
minimize a loss function. On the contrary to other popular biometries such as fingerprints and
irises, finding manually the important distinctive features of a face is difficult. Therefore, an
end-to-end gradient-based approach is very well-suited to face recognition. Still, authors have
already proposed deep metric learning approaches for other biometries (Minaee et al., 2019).

Loss functions for DML. Deep metric learning has replaced the sequence of hand-crafted
features and dimensionality reduction by end-to-end models, as illustrated in the very influential
paper of Schroff et al. (2015). Therefore, a lot of research focuses on better network architectures.
Simultaneously, the advent of gradient-based learning has paved the way for extensive research in
the design of loss functions. Early facial recognition systems used the usual softmax cross-entropy
loss, an usual classification loss in deep learning that seeks to separates identities (Goodfellow
et al., 2016, Section 3.13). Since then, many other loss functions have been proposed, such as
ArcFace (Deng et al., 2019). We refer to Figure 5 of Wang and Deng (2018) for an overview
of losses for facial recognition. Their objective is either to: increase the margin between the
identities to increase inter-group variance, group all observations of each identity together to
decrease intra-group variance, or combine both approaches as does the triplet loss (Schroff et al.,
2015). Practicioners have reported that summing different losses, while adjusting the proportion
of each loss was necessary to optimize for performance (Parkhi et al., 2015).

Ranking-based evaluation. The performance of facial recognition systems is measured on
the ROC curve, as shown in the evaluations of commercial face recognition systems by Grother
and Ngan (2019). Those were conducted by the National Institute of Standards and Technology
(NIST), an agency of the United States Department of Commerce. The ROC curve is a standard
for evaluating scores functions for bipartite ranking, a problem that seeks to assign higher scores
to elements associated with a label +1 than to elements with label —1. We refer to Menon and
Williamson (2016) for a survey of bipartite ranking. In that context, similarity functions can be
seen as score functions on the product space. That observation suggests that exploring the vast
corpus of research on bipartite ranking is a justified approach to find better loss functions for
facial recognition, which is what we undertake in both Part IT and in Chapter 8 of Part III.

Facial recognition has observed rapid improvements in accuracy and does not require the individual
to be cooperative. Therefore, the technology has recently gathered attention in the media and
in public opinion. On top of the usual privacy concerns, commentators have expressed growing
concerns over the possible unreliability or unfairness of facial recognition.

1.3.3 Reliability of Biometrics

The recent advances in facial recognition have confirmed the maturation of the technology, which
foreshadows its deployment and has provoked widespread debate about it. Gates (2011) warned
about the tendency of the public to extrapolate about the ubiquity of such systems, which creates
an illusion of surveillance that changes behavior. However, the technical hurdles enunciated by
Gates (2011) seem much weaker today. Precisely, papers such as Schroff et al. (2015) show the
ability of facial recognition systems to handle very loosely controlled acquisition conditions. Also,
observers have forecasted a compound annual growth rate (CAGR) — i.e. an average geometric
progression — of 14.5 % per year between 2020 and 2027 for the global facial recognition market.
In that context, the issues regarding the deployment of facial recognition and other machine
learning technologies belong to the domain of the legislator, but the decisions of the model are of
the responsibility of the machine learning practicioner.

Bias in facial recognition. In the specific case of facial recognition, the NIST has precisely
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Figure 1.1: This graph shows that fixing a threshold for a fixed false positive rate (called False
Matching Rate (FMR) in facial recognition) of o = 107° on the general population can give higher
false positive rate when used on another type of population. Specifically, it gives a = 10728 for
the population that originates from Polynesia.

quantified important negative differentials in recognition performance for people of color, with
Caucasians as the reference class. Figure 1.1 illustrates that and is extracted from Grother and
Ngan (2019). The observation was echoed by many news outlets and referred to as “racial bias’
in 2019. The main justification was that the face databases used for the training of such systems
are generally composed of European and northern American personalities, which are mostly
Caucasians and do not represent the general population. Authors interpreted the observation
as an “other-race effect” for automatic face recognition, an idea introduced in Furl et al. (2002)
and Phillips et al. (2011), that states that humans generally struggle to recognize ethnicities
different from their own. Some authors have presented strategies to correct this specific issue
explicitly (Wang et al., 2019). More generally, a broad literature on bias in machine learning can
be invoked to tackle that issue (Bolukbasi et al., 2016; Zhao et al., 2017; Hendricks et al., 2018;
Liu et al., 2016; Huang et al., 2006). Chapter 9 of Part III contributes to that effort, by providing
a general reweighting scheme that addresses usual representativeness problems in biometrics.

)

Limitations of dataset representativeness. While having a database that represents the
target population is important, it cannot be expected to correct for inherent biases in the training
data. Precisely, even if a social group identified by protected attributes such as race or religion is
significantly poorer on average than another social group, it can be deemed as immoral to refuse
a loan on the basis that an applicant belongs to the former group. In that context, observers
have bluntly qualified predictive algorithms of “opinions embedded in math” (O’Neil, 2016).

Algorithmic fairness. A large body of research (Agarwal et al., 2018; Woodworth et al., 2017;
Zafar et al., 2017a,b, 2019; Menon and Williamson, 2018; Bechavod and Ligett, 2017) has emerged
on the topic of fairness in machine learning — also called algorithmic fairness — which is a
new field of study. It seeks to add explicit constraints to the training phase of machine learning
models, so that blunt optimizations for accuracy do not lead to a reproduction of systemic societal
biases. Early influential works date all the way back to 2012 (Dwork et al., 2012). More recently,
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authors have worked on a textbook dedicated to the subject (Barocas et al., 2019).

Fairness in facial recognition. In facial recognition, including fairness constraints when
learning models can correct for social groups being harder to identify than others. It is a necessity
in many practical cases. For example, if a system designed to flag persons of interest has a higher
rate of false acceptance for a specific ethnicity, it may interpreted as automatic racial profiling.

Fairness literature. The literature in fairness for classification is broad, but there is little work
in specific settings, such as ranking or similarity learning. Notable exceptions include Beutel
et al. (2019) for ranking, which only modifies a score function with a post-processing step to
satisfy a criterion of fairness. This suggests an opportunity for new approaches to fairness that
are specifically tailored for those important problems, which we address in Chapter 10 of Part III.

As a whole, the thesis participates in the dialogue between the machine learning community
and the biometrics community. It proposes a stylized and theory-oriented view of challenges of
biometrics, which leverages recent literature to study the specific — i.e. pairwise and functional
— criteria used in biometrics. We hope that our perspective on biometric problems will have
valuable impacts on practice, and underline that the derivation of statistical guarantees for
biometric systems constitutes an important tool to ensure their security.

1.3.4 Thesis outline

The thesis is divided in three parts. Part I of the thesis contains technical preliminaries, which
provide all of the intermediary results necessary to derive the theoretical contributions of the thesis.
It is featured in the thesis for clarity reasons. Part IT and Part III focus on our contributions.
Part II delves into the idea of viewing similarity learning as a scoring problem on a product space.
Part IIT engages with the broad idea of reliable machine learning.

Part I is divided in three chapters. The first chapter (Chapter 2) is a quick introduction to
statistical learning theory. It presents the necessary results to derive generalization guarantees
in the easy setting of binary classification. Precisely, it details the derivation of finite-sample
bounds on the excess error of the empirical minimizer. Most of our theoretical contributions can
be interpreted as extensions of those results, but our contributions concern more complicated
problems. The second chapter (Chapter 3) deals with all of the necessary results that relate
to the idea of ranking in machine learning. Our contributions build on two topics related to
rankings: bipartite ranking and ranking aggregation. Indeed, our work extends existing bipartite
ranking guarantees to the similarity ranking setting presented in Part II, ranking aggregation
is used for bagging ranking trees, and the guarantees of the first chapter of Part III are built
on a parametric model for rankings, which can be considered as a tool for ranking aggregation.
Finally, the third and last chapter (Chapter 4) features a short introduction to important results
in U-statistics, an essential component of all pairwise learning problems. As such, Chapter 4
is a prerequisite to our similarity ranking guarantees, and is involved in the estimation of risk
functionals in standard bipartite ranking.

Part IT explores the idea of considering the biometrics verification problem as ranking pairs
of instances. It is divided in three chapters. The first chapter (Chapter 5) presents formally
the idea of seeing similarity learning through the lens of ROC optimization. It proposes novel
guarantees for the problem of pointwise ROC optimization, which seeks to optimize for true
positive rates under an upper bound on the false positive rate. This analysis paves the way
for an extension of the guarantees of the TREERANK algorithm to similarity learning, that we
deliver. Using numerical simulations, we provide the first empirical illustration of fast learning
rates, tailored here to the specific case of pointwise ROC optimization for similarity ranking.
Due to the prohibitive number of pairs involved in the computations, the propositions of the first
chapter are not practical for any large-scale application. To correct this, statisticians proposed
sampling approximations for U-statistics, which is an useful approach in similarity ranking. The
second chapter (Chapter 6) extends that proposition to settings where the dataset is distributed.
Finally, the third chapter (Chapter 7) is rather prospective and proposes simple numerical toy
experiments on similarity ranking, that address the optimization aspect of the problem. The
extension of those experiments will be the subject of future work.

Part III is the last part of the thesis. It revolves around the idea of reliable machine learning and
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is also divided in three chapters. The first chapter (Chapter 8) derives learning guarantees for
predicting an ordering over possible classes with only multiclass classification data, which relies
on the use of a One-Versus-One (OVO) strategy. That problem often arises in noisy problems,
i.e. those for which the top-1 ranked class has a good chance to be a false positive. One is
then interested in the most likely classes, as is often the case in forensics. The second chapter
(Chapter 9) proposes techniques to correct bias between the train and test sample, with auxiliary
information on the difference between the two. It relies on an application of the well-known
principle of importance sampling in statistics. Finally, the third chapter (Chapter 10) proposes
an unification of a class of fairness constraints, as well as a new and more restrictive fairness
constraint, that is more suited to practical situations. It also features theoretical guarantees and
gradient-based approaches for learning under both types of constraints.

The last chapter of the thesis (Chapter 11) contains a summary of the contributions of Part II
and Part III, as well as a detailed account of the most promising directions for future work. It
ends with a general conclusion on the thesis.

The next two sections of this chapter — Section 1.4 and Section 1.5 — summarize the contributions
of the thesis. Each section focuses respectively on the first and second part of the thesis, and is
divided in subsections which summarize each chapter of the part. Finally, Section 1.6 sums up
the perspectives of the thesis.

1.4 Similarity Ranking

Similarity learning plays a key role in many machine learning problems such as clustering,
classification or dimensionality reduction. It is especially important when one considers open-
world problems, — e.g. situations when a model encounters classes after deployment that were
not available during training (Chen et al., 2018) — which is the case for any biometric application.
In this section, we consider metric learning from the perspective of scoring pairs of instances,
which is coherent with the evaluation of many systems based on metric learning techniques.

1.4.1 Similarity Ranking Theory

Bipartite ranking/scoring considers a set of elements associated to a binary label, and seeks
to rank those with label +1 higher than those with label —1. To derive an order on an input
space X, bipartite ranking is generally tackled by learning a score function s : X — R (Menon
and Williamson, 2016). On the other hand, the field of metric/similarity learning (Bellet et al.,
2015a) is the task of learning a similarity — or equivalently, a distance — s : X x X — R on the
product space X x X. While metric learning algorithms were originally evaluated w.r.t. their
relevance for a clustering task (Xing et al., 2002), today practitioners use performance indicators
derived from the ROC curve, the golden standard for evaluating scoring functions in bipartite
ranking. Therefore, our work introduces as similarity ranking the idea of learning similarities for
a ranking objective.

A functional criterion: the ROC curve. In the multi-class classification setting, introduce a
random pair (X,Y) e X x{1,..., K}, with K € N the number of classes, as well as an independent
copy (X', Y”") of (X,Y). Then, one can define a random variable Z = 2-I{Y = Y’} — 1 that is
equal to 1 if both pairs belong to the same class and —1 otherwise. The ROC curve of a similarity

function is then equal to the PP-plot t € R > (H(t), G(t)), where, for all ¢t € R:
Hy(t) :=P{s(X,X')>t|Z=-1} and  G(t):=P{s(X,X')>t|Z = +1}.

Hy(t) and Gg(t) are respectively the false positive and true positive rate associated to the
similarity s. Under continuity assumptions, the ROC curve writes as the graph of the function
a e (0,1) — ROC,(a) = G4(t) o Hy* (). Previous approaches for similarity learning optimize
an empirical evaluation of the Area Under the ROC Curve (AUC) of the similarity function s
(McFee and Lanckriet, 2010; Huo et al., 2018).

Pointwise ROC optimization (pROC). The AUC is a global summary of the ROC curve
which penalizes ranking errors regardless of their position in the list (Clémengon et al., 2008,
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Proposition B.2). Other criteria focus on the top of the list (Clémengon and Vayatis, 2007;
Huo et al., 2018), and their study is the subject of the Ranking the Best literature (Menon
and Williamson, 2016, Section 9). In our work, we consider optimizing the true positive rate
attained by a similarity under an upper bound « € (0,1) on its false positive rate. This setting is
relevant in biometric applications, as security guarantees are specified with a limit on the false
positive rate of the system. We refer to this problem as pointwise ROC optimization (pROC).
Considering the risks:

R (s):=E[s(X,X") | Z = —1] and R*(s) :=E[s(X,X") | Z = +1],
with & a proposed family of similarities, the pROC problem writes:

max R™(s) subject to R (s) < a. (1.1)
We denote a solution of Eq. (1.1) as s*. Clémengon and Vayatis (2010) studied the equivalent of
Eq. (1.1) in bipartite ranking. This problem is analogous to Neyman-Pearson classification (Scott
and Nowak, 2005), and bears close resemblance to the minimum-volume set problem (Scott and
Nowak, 2006). When S is the class of all measurable functions, a solution of Eq. (1.1) writes as a
super-level set of the posterior probability 7 : z, 2’ — P{(X, X’) = (z,2’) | Y = Y'}, which is a
consequence of the Neyman-Pearson fundamental lemma (Lehmann and Romano, 2005, Theorem
3.2.1).

Pairwise estimators. The analysis of Clémengon and Vayatis (2010) relies on the fact that
natural estimators of R (s) and R*(s) are standard empirical means in the case of bipartite
ranking, However, it is not true in similarity ranking. Consider a sample D,, = {(X;,Y;)},
composed of n 4.7.d. copies of the pair (X,Y), then the natural estimators of R (s) and R*(s)
based on D,, write:

1

Ry(s) = = STV # i} (X0, X;), (1:2)
R (s) i= — YHY = Y} - s(X0, X,), (1.3)
N+ g

where ny = >, I{Y; = Vj} and n_ := n(n — 1)/2 — ny. The quantities in Eq. (1.2) and
Eq. (1.3) are not sums of independent random variables, hence the analysis of Clémencon and
Vayatis (2010) breaks down. However, they are ratios of the well-known U-statistics (Lee, 1990;
de la Pena and Giné, 1999).

Generalization guarantees for pROC. The empirical counterpart of pROC (Eq. (1.1)) writes:

max R (s) subject to R;(s) <a+ ¢, (1.4)
se

where ¢ > 0 is a term, which tolerates the variations of R, (s) around its expectation R~ (s). We
denote by s, a solution of Eq. (1.4). The generalization of standard concentration inequalities
to U-statistics enables us to extend the uniform guarantees of Clémencon and Vayatis (2010).
Precisely, we simultaneously ensure with high probability: that Rt (s*)—R™ (s,,) is upper-bounded
by a quantity of order n='/2 and that R~ (s,) < a + ¢, with ¢, = O(n~'/?). In summary, we
show that both excesss risk are bounded with the standard learning speed in n~? without
assumptions on the distribution of the data.

Fast generalization speeds for pROC. In the case of binary classification, Mammen and
Tsybakov (1995) have shown that, under a noise assumption parameterized by a € (0,1) on the
data distribution, fast convergence speeds in O(n_l/ (2_‘1)) hold. The fast speed is a consequence
of an upper-bound on the variance of the excess risk, that is derived from the noise assumption.
The analysis of Clémencon and Vayatis (2010) built on those ideas to propose an upper bound
on R*(s*) — R*(s,) in O(n~(?*®)/%) with similar guarantees in O(n~/2) for R~, for pROC in
bipartite ranking. Compared to the binary classification setting, pROC has lower learning speeds,
which comes from the bilateral nature of pROC. Our work extend the fast speeds of Clémengon
and Vayatis (2010) from bipartite ranking to the case of similarity ranking. Incidentally, the
result is true under a much weaker assumption. Precisely, it relies on the second Hoeffding’s
decomposition for U-statistics (Hoeffding, 1948), which implies that the deviation of the excess
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risk consists mainly in that of its Hajek projection. Since the Hajek projection is a variance-
reducing transformation of a U-statistic (van der Vaart, 2000, Section 11), weaker assumptions
imply the upper-bound on the variance required for fast learning speeds. Clémengon et al. (2008)
featured that usage of the properties of U-statistics to derive fast convergence speeds, but never
applied it to problems that feature a random constraint.

Empirical illustration of fast speeds. Our work also contains the first experimental illustra-
tion of fast speeds of convergence, on our specific similarity ranking problem. The illustration
relies on the generation of data that satisfies the noise assumption for different noise parameters

€ (0,1), followed by a comparison of their empirical learning rates. We chose the data distri-
bution and the proposed family S so that the optimal similarity s* is known and the empirical
minimizer s, can be found exactly. For that matter, we set S as the decision stumps on a fixed
transformation of the data.

Limitations of pROC. While the pROC problem echoes practical considerations in biometrics,
where systems are deployed to work at a fixed rate of false positives «, its empirical resolution is
hard in practice. Few exceptions rely on fixed partitioning of the input space (Scott and Nowak,
2006). In many situations, the false positive rate « for a system is unknown in advance, thus
optimizing for the wrong o may not yield satisfying outcomes at deployment.

TreeRank for bipartite ranking. The TREERANK algorithm for bipartite ranking was
introduced in Clémengon and Vayatis (2009). TREERANK learns a piecewise constant score
function sp, , built to provide an adaptive piecewise linear estimation of the optimal ROC curve.
As implied by optimal solutions of Eq. (1.1), the optimal ROC curve ROC* is that of the posterior
probability . TREERANK recursively splits the input space X and optimizes greedily the AUC
at each split, thus forming a binary tree of depth D,, of nested partitions of the input space
X. Under specific assumptions, Clémencon and Vayatis (2009) have proven uniform bounds in
supremum norm between the optimal ROC curve and that of sp, when D,, ~ 4/log(n), i.e. that
with large probability:

sup [ROC,, (a) —ROC*(a)| < exp(—Ay/log(n)), (1.5)

a€l0,1]

where A is a constant specified by the user.

TreeRank for similarity ranking. Our work proposes an extension of the TREERANK
algorithm for learning similarities, by considering recursive splits of the product space X x X. To
ensure that the similarity s is symmetric, we consider only symmetric splits with respect to the
two arguments in the input space X < R%, by splitting on the following simple reparametrization
of X x X:

Using the same extensions of classic concentrations inequalities to U-statistics as before, we
extended the proof of Eq. (1.5) to similarity ranking. Our analysis provides a theoretically-
supported approach to learning similarities that approach the optimal ROC curve in supremum
norm.

While we have proven theoretical guarantees for approaches to similarity ranking, the estimators
involved in the computation of the risk functionals require performing sums of very large numbers
of terms. The induced computational cost makes the practical application of such approaches
prohibitive. For example, calculating of R, (s) require summing n_ terms, which is quadratic
in n when K is constant. In typical biometric applications, the number of samples per class is
fixed. Hence, the proportion of negative pairs n_ over all pairs n? is even higher than the case
K constant. The next section exploits recent analyses in the approximation of U-statistics to
alleviate that problem.

1.4.2 Distributed U-Statistics

Most biometric applications learn on large-scale datasets. For facial recognition, the largest
dataset released to the public contains 8.2 million images (Guo et al., 2016) and private datasets
are much larger. The scale of facial recognition datasets justifies the computational concerns
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described in Section 1.4.1, as the number of negative pairs is higher than 50 trillions (10'2) for
Guo et al. (2016). Besides this restriction on the number of operations, these datasets often
cannot be contained in the random-access memory (RAM) of a single machine. In our work,
we proposed an approach to tackle the estimation of U-statistics in a distributed environment,
which deals with those two limitations simultaneously.

Incomplete U-statistics. The idea of alleviating the computational complexity of U-statistics
is not new, as Blom (1976) proposed summing over a small finite number of B pairs selected
by sampling with replacement to in the set of all pairs to form incomplete U-statistics in 1976.
Clémencon et al. (2016) derived an upper bound on the deviation between an incomplete U-
statistic Up and the complete U-statistic U,, that holds with high probability. In the case of one
sample U-statistics of degree two — averages of all possible pairs formed with a sample —, the
bound implies that using the estimator Up with only B = n pairs suffices to recover a usual
learning rate of order n~/2, instead of summing all n(n—1)/2 pairs as for U,,. This result implies
that one can extend the proofs for similarity ranking presented above so that they work with
incomplete U-statistics, which makes the setting practical in large-scale learning applications.

Distributed environments. In cases where the data does not fit on a single machine, the
recent technological progresses regarding distributed databases and parallel computation made
the deployment of distributed machine learning accessible, largely due to the development of
frameworks for cluster computing, such as Apache Spark (Zaharia et al., 2010) or Petuum
(Xing et al., 2015). These frameworks abstracted away the network and communication aspects
of distributed algorithms. As such, they eased the deployment of distributed algorithms, but
have restricted the types of operations that can be efficiently achieved, generally in order to
guarantee algorithmic properties. At the same time, Jordan (2013) urged statisticians to guide
practitioners of large-scale machine learning, by studying the implications of distribution on
estimation, particularly to put in perspective the gains in computational time with the potential
losses in statistical accuracy. Our work addresses this issue, by proposing several estimators for
U-statistics in a distributed setting and comparing their variances. In that context, we propose
time versus variance tradeoffs.

Probabilistic framework. Introduce two independent i.i.d. samples D,, = {Xy,..., X} c X
and Q,, = {Z1,...,Zm} < Z of respectively n € N and m € N elements, such that D,, and Q,,
can have different distributions. The complete two-sample U-statistic of kernel A : X x Z — R
associated with those samples writes as:

T 0o

with n = (n,m). On the other hand, the incomplete counterpart of U, (h) based on B pairs
writes as:

1
Up(h) = 5 D h(Xk, Z), (1.7)
(k,l)EDB

where Dp is a set of B elements selected at random in the set of all pairs {(k,1) | (k1) €
{1,...,n} x {1,...,m}}. For large-scale data, the full datasets D,, and Q,, can not fit on a
single machine, which makes the direct computation of Eq. (1.6) and Eq. (1.7) impossible. In
that context, the standard approach is to distribute the data on N € N workers. For a standard
mean, the simple computation of the average of the local means for each worker yields the same
estimator as in the centralized setting. The computation is not that simple for U-statistics, since
each worker can only form pairs with the local sample without network communication.

Distributed estimators for U-statistics. We first introduced two simple estimators in the
distributed setting that do not require network communication: the average U, n of N complete
U-statistics on each local sample, and the average Uy n g of N incomplete U-statistics formed
with B randomly selected pairs on each local sample. Using the second Hoeffding decomposition,
we derive an analytical formulation for the variances of those estimators, following the steps of
Hoeffding (1948) for U,. Their expression shows that the estimators U, n and U, n, g have a
limited accuracy, i.e. a minimum variance, that can be significantly higher than that of U, for a
specific h and specific distributions of X; and Z;.
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Repartition for distributed estimators. This difference in variance between distributed
estimators and U,, comes from the fact that many pairs involved in the computation of the latter
are not involved in that of the former. To counterbalance this effect, we propose to average
estimators computed between repartitioning procedures, that reassign the observations to each of
the clusters at random, so that every pair involved in U, has a chance to be seen. We propose
two estimators with repartitioning: Uy v, (resp. Un n,p,r) that averages T estimators Up n
(resp. Un,n,5) computed on T different partitioning of the data. As T grows, the variance of
those estimators approach the variance of U, by above.

Relative variance of our estimates. We provide analytical expressions for the variance of
the estimators Uy, U, Un,N,Un,~,B, Un,N,r and Uy n,B,T, for several ways of distributing the
data on the workers. In that regard, we first consider sampling without replacement (SWOR),
which is relevant when splitting all data on several machines for space constraints. Then, we
consider with replacement (SWR), which is relevant when selecting batches of data to compute
several estimates in parallel, e.g. in minibatch gradient descent. We assume for both settings
that each worker contains n/N elements of the sample D,, and m/N elements of Q,,, a setting
we call prop. Relaxing that assumption implies that there is a nonzero probability to have no
elements of either D,, or Q,,, in a worker. In that case, one has to provide a default value for the
estimator of that worker. Hence, the variance has no simple interpretable analytic form, so we
provide empirical evidence that the observed variances are of the same order. Additionally, we
characterize the parameters h,n,m and the distributions of X5, Z; for which repartitioning is
important.

Learning with distributed U-statistics. Papa et al. (2015) studied stochastic gradient
descent for incomplete U-statistics. While we do not extend their analysis to our distributed
estimators, our work considers the minimization of U-statistics with stochastic gradient descent
in a distributed environment, by estimating the gradient with U, n g and repartitioning the data
every n, timesteps. We provide empirical evidence that lowering n, gives a better solution to
the optimization process on average. Also, the variance of the loss of the final solution is much
smaller, which shows the increased robustness obtained by repartitioning the data.

While Section 1.4.1 and this section account respectively for the generalization and scalability
aspect of similarity ranking, the next section focuses on the optimization aspect. As such, the
next section is more prospective and gives optimization strategies for similarity ranking problems
on toy examples.

1.4.3 Practical Similarity Ranking

The development of the deep metric learning literature is motivated by a need for criteria that
align with the requirements of biometric identification, and can be optimized by gradient descent.
Most of those criteria focus on better separating the identities with some heuristic, such as that
all instances associated to a same identity should be mapped to the same point in a representation
space, see the center loss (Wen et al., 2016). While those criteria are sensible, they are poorly
connected with the evaluation of biometric systems, which is based on the ROC curve. The ROC
curve is a functional made to assess the capacity of a scoring function to distinguish positive from
negative instances, or in biometrics the capacity of a similarity function to distinguish matching
instances from non-matching instances. The connection between bipartite ranking and biometrics
motivates us to propose practical approaches for learning similarity functions, that optimize a
measure derived from the ROC curve.

Previous analyses of similarity ranking. Viewing similarity learning as pairwise bipartite
ranking is extensively discussed in other parts of the thesis under the name similarity ranking.
Indeed, we provided generalization results for the pointwise ROC optimization (pROC) problem,
sometimes referred to as Neyman-Pearson classification (Scott and Nowak, 2006). The pROC
problem consists in finding a score s and a threshold ¢ for it, that give the highest possible true
positive rate under an upper-bound on the false positive rate. Additionally, we provided an exten-
sion of the analysis and methodology of the TREERANK algorithm, which was originally shown to
learn score functions s that approximate the optimal ROC in supremum norm (Clémengon and
Vayatis, 2009), to learn similarity functions. Finally, we motivated theoretically such methods, as
we prove that one can replace the computationally intensive estimators involved by incomplete
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U-statistics, which dealt with the computational limitations associated to similarity ranking.

Limitations of previous analyses. Our theoretical results justify considering the optimization
of the pROC problem or the use of the TREERANK algorithm. However, they do not imply
obvious approaches to optimize for the pROC problem, nor guarantee the empirical performance
of our extension of the TREERANK algorithm. This chapter of the thesis provides illustrations of
possible approaches, that are demonstrated to work on simple synthetic datasets. Deriving an
extensive empirical evaluation of those approaches is an interesting direction for future work.

Solving pROC for linear similarities. While many papers discuss the pROC problem (Scott
and Nowak, 2006; Clémengon and Vayatis, 2010; Rigollet and Tong, 2011), there lacks practical
approaches to it, with the exception of a few propositions based on recursive partitioning, see
e.g. Scott and Nowak (2006). Introduce a sample of n data points as D,, := {(z;,y:)},
X x {1,...,K}, where y; is the identity of an observation z; € X and X = RY. In the case
of similarity ranking, pROC at level o € (0,1) over a class of proposed functions S, with
s: X x X —> R for any s € S, writes:

1 1
max —— Z Hy; = y;} - s(xi,x;) subject to — Z Wy # y;} - s(zi, ;) < a. (1.8)
seS Ny i<j n

i<j

In the general case, Eq. (1.8) can be very hard to solve. For example, if S is composed of
indicators of sets in X x X, then Eq. (1.8) might not be differentiable, nor continuous. However, if
the family S has a simple form, solving Eq. (1.8) may be much easier. For example, we propose an
explicit analytical solution when S is the set of all bounded bilinear similarities (z,2’) — x T Ax
with 4 € R4*? and ||A]|, < 1 where ||| is the Frobenius norm. While we show that this
approach gives sensible solutions to pointwise ROC optimization for very specific distributions,
the general case requires more flexible families of functions.

Solving pROC with gradient descent. To address pROC with more complex proposed
families, we propose a gradient descent based approach to minimize a counterpart of the excess
error for minimum volume set estimation of Scott and Nowak (2006), that is adapted for bipartite
ranking. While we demonstrate its efficiency with a simple linear classifier and a toy example,
the approach is flexible enough to accomodate for more complex models, as well as an extension
to similarity ranking. However, we will have to demonstrate its performance empirically on more
eloquent examples. Introduce as H and G the distributions of respectively X | Y = —1 and
X | Y = +1, as well as the optimal rejection region for pointwise ROC optimization as R¥, then
our relaxation of the excess error writes:

* -~ 5 2 9
(il (G(Ra) - G*(qu>))+ + (H(mb) - a)+ st Jlwls+ b <1 (1.9)

where G and H are relaxed empirical versions of respectively G and H, and (z)+ := max(z,0) for
any = € R. By minimizing the objective of Eq. (12.9) and projecting the weights on the unit ball,
our method recovers optimal rejection regions by gradient descent, for our toy example. Though
the quantity G(R?) is unknown, we conjecture that the results are not extremely sensitive to
this value, and that reasonable approximations can be proposed for it in most applications. The
pROC problem is a principled approach to learning similarities with a ranking objective, but
does not address ranking as a global problem. Precisely, it focuses on recovering a single level set
of the score function, as demonstrated by the fundamental lemma of Neyman-Pearson, whereas
bipartite ranking consists in recovering an order relation between any two points of the input
space.

TreeRank for similarity learning. The TREERANK algorithm of Clémencon and Vayatis
(2009) deals with bipartite ranking as a global problem. Precisely, it tackles bipartite ranking with
a recursive splitting procedure, that solves binary classification problems with asymmetrically
weighted errors between positives and negatives instances. As presented before, our work extended
the algorithm to the case of similarity ranking, as well as the supremum norm guarantees for
the distance of the ROC of the learned score to the optimal ROC. To build intuition on our
TREERANK variant for similarity ranking, we illustrate visually the shape of our proposed
symmetric regions for splitting the space.

Practical considerations for TreeRank. Two drawbacks of TREERANK are : 1) its depen-
dence on the initial splits of the space, which jeopardize performance if the proposed splitting
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family is too limited, 2) and its discontinuous nature, which is inconsistent with natural hypothe-
ses of many practical settings. A first response to these issues is to extend the idea of random
forests proposed in Breiman (2001) to TREERANK, which is proposed in Clémencon et al. (2013).
We show on a toy dataset with continuous likelihood ratio dG/dH that averaged ranking trees
can correct for both the initial mispecification of the proposed family and the discrete nature of
ranking trees. Precisely, the averaged score function that we obtain gives a ROC curve that is
almost undistinguishable from the optimal ROC, despite both its finite — but numerous — set
of values, and the inadequacy of each tree with respect to the true likelihood ratio.

These proposals sketch a way for new algorithms specifically designed for solving the similarity
ranking problem, which is a principled approach to dealing with the biometric identification
problem. However, they are merely illustrations on very simple problems. Finding new approaches
for practical similarity ranking, ideally for large-scale experiments that correspond to operational
scenarios in biometrics, is an exciting track for future work.

1.5 Reliable Machine Learning

Besides the similarity learning aspect, biometrics and particularly facial recognition incarnate
many important issues in machine learning, as shown in the reports of the NIST (National
Institute of Standards and Technology) on industrial facial recognition benchmarks (Grother
and Ngan, 2019). Precisely, facial recognition is confronted with issues regarding the robustness
of predictions, bias in the training data, as well as algorithmic fairness. The subsections of
this section tackle all of those issues sequentially. While there is extensive literature on those
general topics, our work deals with challenging and underexamined settings that directly apply
to biometric problems. Precisely: 1) for prediction robustness, we consider learning an ordered
list of identities, as do particular biometric identification problems, 2) for training data bias, we
reweight training instances using high-level information, which can be nationality in the context
of border control, 3) for fairness, we focus on score functions as a gateway to similarity functions,
as done in Part II.

1.5.1 Ranking the Most Likely Labels

In biometrics systems for law enforcement, an human expert often analyzes several of the most
likely suspects proposed by a system. More generally, hard classification problems focus on the
most likely labels, such as the ILSVRC (ImageNet Large Scale Visual Recognition Challenge)
challenge, where Krizhevsky et al. (2012) and subsequent papers consider the accuracy at top-5
alongside the usual (top-1) prediction accuracy. In our work, we propose an approach to tackle
predicting an ordered list of labels from classification data. We refer to that problem by the name
of label ranking (LR). Precisely, we propose to use the well-known One-versus-One approach to
classification, and derive guarantees for that approach.

Probabilistic framework for label ranking (LR). As usual in the multiclass classification
setting, consider a random pair (X,Y) € X x Y with Y = {1,..., K}, as well as the risk

L(g) = P{g(X) # Y} associated to a classifier g : X — ). The optimal classifier for L(g) in the
class of all measurable functions is the well-known Bayes classifier g*, defined as follows:

g*(z) := argmax n(z),
ke{l,...,.K}
where 1y, : . — P{Y =k | X = x} is the posterior probability of class k for any k € {1,..., K}.
We refer to the task of finding an ordered list of the most likely labels as label ranking (LR). It
amounts to associating to any x € X’ a permutation o € G, such that:

Nox=1(1) = Mok=t(2) = " > Mok (k)" (1.10)

We denote by o% the corresponding random permutation, i.e. o% satisfies, for any o € &g,
P{o% =0} =P{X € A,} with A, = {x e X | 0¥ = 0}.

On ranking median regression (RMR). Another well-known problem in statistical literature
that concerns predicting a ranking over a set of labels is ranking median regression (RMR)
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(Tsoumakas et al., 2009; Vembu and Géartner, 2010; Clémencon et al., 2018). RMR considers
a random pair (X,X) € X x &g, hence ¥ is a random permutation. RMR learns from data a
ranking rule s : X — G that minimizes the risk:

R(s) := E[d(Z, s(X))], (1.11)

where d : 6 x G — R, is a symmetric loss function. The distance d quantifies the distance
between rankings. The most well-known distance is the Kendall 7 distance d., which is equal to
the number of pairwise disagreements between the two permutations.

Optimal solution of RMR. Previous work on RMR (Clémengon et al., 2018) has shown
that: the optimal minimizer of Eq. (1.11) for measurable ranking rules has a simple analytical
formulation for the distance d,, under an assumption called the Strict Stochastic Transitivity
(SST). SST assumes that the pairwise probabilities py ;(z) := P{3(k) < 2(I) | X = z} and
prk(z) i=1—pp(x) for any 1 < k <1 < K satisfy: for all z € X and (i, j, k) € {1,..., K}? with
i # j, we have p; ;(z) # 1/2 and:

pij(x) >1/2 and pik(x) >1/2 = pik(x) > 1/2.
Under the SST assumption, the optimal ranking rule for d, writes:

sk (k) =1+ > Ipea(X) < 1/2}. (1.12)
l#k

LR as RMR with partial information. While the characterization of the optimal element is
a welcome extension of usual learning theory (Devroye et al., 1996) to the RMR problem, the
whole ranking 3 is not available when dealing with classification data. However, our work shows
that if we consider the random permutation ¥ to be generated by a conditional BLTP model
(Korba, 2018) with preference vector n(X) = (m(X),...,nx (X)), then it is possible to build ¥
so that it satisfies Y = ¥ 71(1) almost surely. Based on this observation, we propose to consider
LR as a RMR problem with the partial information ¥71(1) about the full random permutation
3.

Optimal solutions of LR with One-versus-One (OVO). One can calculate the expressions
of the pairwise probabilities py ;(x)’s under the conditional BTLP model with preference vector
n(x). Precisely, we have pg(z) = ng(z)/(ne(x) + m(x)) for any z € X and k <. Remark that
pk.1(x) corresponds to the probability of predicting k against [ for the One-versus-One (OVO)
problem of classifying k against {. The One-versus-One (OVO) approach is a well-studied approach
(Hastie and Tibshirani, 1997; Moreira and Mayoraz, 1998; Allwein et al., 2000; Firnkranz, 2002)
to tackle multiclass classification using binary classification algorithms. OVO consists in learning
K (K — 1)/2 decision functions, i.e. a classifier for each class k against [ with k < [, and taking
the majority vote of the K(K — 1)/2 classifiers. The Bayes classifier for the (k,1) OVO problem
is gi, 12— 2-I{pra(z) = 1/2} — 1. Hence, Eq. (1.12) reduces to:

Sk (k) = 1+ 3 gt (X) = —1}. (113)
l#k

Notice that s% corresponds to o% in Eq. (1.10), as soon as all of the 7, (X) are distinct. We
showed that a combination of the optimal solutions of all of the K(K — 1)/2 OVO problems
imply an optimal ranking rule s%. Hence, we can probably derive a good solution of the LR
problem from good solutions of all of the OVO problems.

Guarantees for LR with OVO. We propose a solution to LR, that uses a combination of the
solutions of all empirical OVO classification problems. Then, we derive theoretical guarantees
for that solution. Introduce a sample D,, = {(X;,Y;)}"; of n 4.i.d. copies of the random pair
(X,Y), as well as the notation Yy, ;; = I{Y; =1} —I{Y; = k} for any k <[ and any i € {1,...,n}.
The empirical risk f/k,l of g: X - {—1,+1} for OVO classification of k versus [ writes:

1
ng + ny

Lia(g) = > Hg(Xe) # Vi),

©:Y;e{k,l}
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where ng = > | I{Y; = k} for any k € {1,..., K}. We denote the minimizer of Ek,l over the
fixed proposed class G of binary classifiers as gy ;. Following Eq. (1.13), an empirical solution of
LR writes:

Sx (k) =1+ > Hgeu(X) = —1}.

k#l
A simple union bound implies:
P{Sx # 5%} < ), P{Gra(X) # g1 (X)}. (1.14)
k<l

Eq. (1.14) shows that the sum of the probabilities of not predicting the optimal class for each
OVO problem bounds the probability of not predicting the optimal list of labels in LR. At the
same time, a consequence of usual hypotheses for the derivation of fast generalization speeds —
first presented in Mammen and Tsybakov (1995) and reviewed in Boucheron et al. (2005) — is an
upper-bound of the r.h.s. quantity in Eq. (1.14) by the excess errors of the k versus [ classification
problems. Under a standard noise assumption, we provide usual fast convergence bounds in
O(n="(=) for the excess error of each k versus [ classification problem, where a € (0,1) is a
noise parameter. From Eq. (1.14), these results imply a convergence bound in O(n~%(2=)) for
the quantity P{Sx # s%}, which is slower than classification learning speeds, due to the inherent
complexity of label ranking.

Implications of the analysis. The counterpart of the RMR error Eq. (1.11) for LR would be
the following risk:

R(s) := E[d(s(X), 0%)], (1.15)
for a ranking rule s : X — Gx. Note that, for any bounded distance d:

d(o,0') <o # 0’} x max  d(og,01), (1.16)

00,01€EG K

for any 0,0’ € 6. Eq. (1.16) implies an extension of our guarantees for P{sx # s%} to the
risk Eq. (1.15) of the empirical minimizer. Incidentally, our analysis of LR provides the first
generalization bounds for the OVO approach to multiclass classification, by considering the
specific case k = 1 for the top-k classification guarantees that we provide.

In conclusion, we proposed the new yet natural label ranking (LR) problem, which consists in
learning to predict an ordered list of most likely labels from multiclass classification data. While
Korba et al. (2018) and Brinker and Hillermeier (2019) give practical approaches to ranking
median regression (RMR) with partial information, our theoretical guarantees are new. Our
analysis fits nicely into the usual empirical risk minimization framework and exploits recent
results on RMR. A byproduct of our analysis is the first generalization bounds for the OVO
approach to multiclass classification.

1.5.2 Selection Bias Correction

In statistical learning problems, the distribution P’ of the training data Zi,..., Z] may differ
from that of the testing data P. This setup constitutes a particular case of transfer learning
(Pan and Yang, 2010; Ben-David et al., 2010; Storkey, 2009; Redko et al., 2019). Notably in
facial recognition problems, the training population is frequently not representative of the testing
population, as underlined in Wang et al. (2019). Auxiliary information in the form of high
level characteristics is often available, such as the nationality associated to a portrait in facial
recognition. Our work addresses learning with biased data from the lens of Empirical Risk
Minimization (ERM). In that regard, we propose an approach based on importance sampling
that deals with: 1) classification problems where class probabilities differ between the training
and testing step, 2) situations where the data originates from stratified populations that are
represented differently between training and testing, 3) PU learning, the problem of learning with
a sample of positive and unlabeled data (du Plessis et al., 2014), 4) and learning with censored
data (Fleming and Harrington, 2011). Our analysis is supported by strong empirical evidence for
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classification on the ImageNet database (Russakovsky et al., 2014), for which we formed strata
information from higher level concepts than the predicted classes.

Weighted Empirical Risk Minimization (WERM). The goal of learning algorithms is
generally to find a parameter 6 € ©, that minimizes the expected risk R(0) = Ep[¢(0, Z)] on
the testing data, with £: © x Z — R, is a measurable loss function. To approximate R(6), we
propose a weighted estimator ﬁwm on the training data:

n

where w = (wy,...,w,) is a weight vector. When P’ = P and w = (1,...,1), then ﬁwmw) is
the usual empirical risk, as well as an unbiased estimator of the expected test risk R(6). When
P’ # P and P is absolutely continuous with respect to P’, the importance sampling method
(Wasserman, 2010, Section 25.3) introduces optimal weights w* := (wf,...,w*) that satisfy
wf := ®(Z;) for any i € {1,...,n}, where ®(z) := (dP/dP’)(z) for any z € Z. Since the function
® denotes the likelihood ratio between P’ and P, ﬁw*’n is an unbiased estimator of R.

Generalization guarantees for WERM. We then propose usual generalization guarantees in
O(n~'/?) that depend on the supremum norm |®]],, of the likelihood ratio over the input space
Z. Our guarantees show that generalization is better when the two distributions P’ and P are
similar. In the general case, the likelihood ratio @ is unknown, which limits the applicability of
the technique. Additionally, ® is a function over the input space Z, which makes its estimation
impractical. Our work presents situations for which the likelihood function ® has a simple form,
under the assumption that auxiliary information about the relationship between the distributions
P’ and P is available.

WERM for strata frequencies. In the context multiclass classification, i7.e. when Z =
(X,)Y) e X xY with Y = {1,...,K} and K € N is the number of classes, ® has a simple
form when the proportion p; = Pz.p{Y = k} of each class k in the test dataset is known.
In that context, the optimal weights w* satisfy w} = py,/py. for any i € {1,...,n}, where
P, = Pp{Y = k} is the train set proportion of class k for any k € {1,..., K}. Note that the
p).’s can be estimated from the training data. This reweighting strategy does not depends on a
classification objective, but applies to any case with known: proportions of each strata for some
stratification in the test distribution, and stratum associated to each sample in the training set.

WERM for Positive Unlabeled (PU) learning. Positive Unlabeled (PU) learning has
received increasing attention in the statistical learning literature recently (du Plessis and Sugiyama,
2014; du Plessis et al., 2014, 2015; Kiryo et al., 2017; Bekker et al., 2019). PU learning considers a
binary classification problem, i.e. Z = (X,Y) € X x {—1,+1}, and learns a classification decision
with a sample of positive instances and one of unlabeled instances. The unlabeled sample is a
mixture of both negative and positive data with fixed proportions. Our work shows that, by
reweighting the instances of those samples, we obtain an unbiased estimator of the risk R. We
provide statistical guarantees for the minimizer of our estimated risk.

Experiments on the ImageNet dataset. Finally, we provide convincing numerical evidence
of the effectiveness of weighted ERM on the ImageNet dataset, a database used to benchmark
large-scale visual classification algorithms (Russakovsky et al., 2014). ImageNet classes are based
on the WordNet lexical database for english (Fellbaum, 1998). As such, they can be regrouped
in several higher-level concepts, which constituted the strata of our weighted classification
experiment. For example, the class “flamingo” would belong to the stratum “bird”. Using
high-level information to reweight the training data greatly increases performance on the testing
set, measured in terms of top-1 and top-5 classification accuracy.

Ensuring the representativeness of a database may help to obtain fair predictions, but there is
growing interest in mechanisms that correct explicitly for inherent biases of training data.
1.5.3 Learning Fair Scoring Functions

Learning a classifier under fairness constraints has received a great deal of attention (Dwork et al.,
2012; Zafar et al., 2017a; Donini et al., 2018; Barocas et al., 2019; Williamson and Menon, 2019;
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McNamara et al., 2019). However, proposed approaches for fairness in ranking either only correct
the scores with a post-processing step (Borkan et al., 2019; Beutel et al., 2019; Zehlike et al.,
2017; Celis et al., 2018), or tackle original notions of fairness, such as fairness in exposure for the
sequential presentation of rankings (Singh and Joachims, 2018, 2019). Many fairness for ranking
papers have proposed different constraints based on the Area Under the ROC Curve (AUC), a
standard measure of performance in ranking. Our work first proposes: an unified framework for
AUC-based fairness constraints, generalization guarantees for the minimization of a loss that
incorporates any of those constraints, as well as a practical optimization procedure for that loss
based on gradient descent. Then, we show the limitation of AUC-based fairness constraints, and
propose stronger ROC-based constraints. Finally, we prove generalization guarantees and an
extension of our gradient-based optimization procedure to learning with the new ROC-based
constraints.

Framework for fair bipartite ranking. The standard fairness framework for binary classifi-
cation considers a triplet of random variables (X,Y,Z) € X x {—1,1} x {0,1}, where X is the
input random variable Y is the binary output random variable, and Z encodes the membership
to a protected group. In bipartite ranking, one learns a score function s : X — R and evaluates
it with respect to where it projects the negatives Y = —1 relatively to the positives Y = +1 on
the real line. In the context of fairness, the influence of Z on the distribution of the scores is

important. Hence, we introduce the following conditional distributions of a given score s for any
z € {0,1}:

H (t) :=P{s(X)<t|Y =—=1} and HP(t):=P{s(X)<t|Y =-1,Z=2},

S

Go(t) :=P{s(X)<t|Y =41} and GO @#):=P{s(X)<t|Y =+1,2Z==z}.

While the ROC curve serves to evaluate the ranking performance of a score function, it is also a
general tool to assess the differences between two distributions functions h and g over R. In this
context, the ROC curve is known as the probability-probability (PP) plot of h and g. The Area
Under the ROC Curve (AUC) is a scalar summary of the ROC curve, that is omnipresent in the
ranking literature. It generally serves to evaluate the performance of bipartite ranking algorithms
(Clémencon et al., 2008). Formally, the ROC and AUC between the two c.d.f.’s h and g, writes:

1
ROCh,:ae[0,1]—1—goh ' (1—a) and AUCy 4 := J ROC, 4(a) da.
0
Differences in the distributions of the positives (or negatives) between the protected groups leads
to discrepancies in the error rates of those groups, as observed for facial recognition in Grother
and Ngan (2019).

Unified criterion for AUC-based fairness. To correct discrepancies of error rates between
protected groups, many authors — principally from the recommendation systems community —
have proposed fairness constraints based on the AUC (Beutel et al., 2019; Borkan et al., 2019;

Kallus and Zhou, 2019). With D(s) := (H”, HY, G, G{")T, those constraints write:
AUCDLTD(S),BTD(S) = AUCO/TD(s),B/TD(s)a (117)

for different values of (a,B,a/,) € (P)*, where P = {v | v € RY,1Tv = 1} denotes the
4-simplex. Our work shows that: if the fairness constraint Eq. (1.17) is satisfied when the
distribution X|Y = y, Z = z does not depend on z € {0, 1} for both y = —1 and y = +1, then
Eq. (1.17) writes as the linear combination I'" C(s) = 0 of five elementary fairness constraints
C(s) = (C1(s),...,C5(s)) with T € R5. Our general definition for AUC-based fairness constraints
englobes all proposed measures of fairness based on the AUC and can serve to to derive new ones.
More importantly, it paves the way for considering flexible fair scoring approaches based on AUC
constraints.

Learning under AUC-based constraints. We integrate the AUC-based fairness constraint
as a penalization in the objective function, and maximize the objective:

max AUCy, ¢, — ALTC(s)], (1.18)
SE.

on a family of scoring functions §. The parameter A dictates the trade-off between ranking
accuracy and fairness. We provide theoretical guarantees on the generalization error of the
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criterion in Eq. (1.18), which are proven with concentration inequalities on the deviations of
U-statistics. We propose a gradient-based algorithm that simply optimizes a relaxed version of
Eq. (1.18). Introduce the notation ~ to denote the relaxation of an empirical estimation AUC
with the logistic function o : z — 1/(1 + e~7), our relaxation of the loss with a specific AUC
constraint writes as:

i)\(s) = XI\J_CHS,GS —/\~C<A—I\J_C —JEJEH§1>7G<31)) , (1.19)

O GO
where ¢ € [—1, 1] is a parameter that changes during the learning process. The parameter c is
modified every fixed nagapt gradient steps by a fixed value, depending on whether the difference
in AUC’s in the constraint of Eq. (1.19) is evaluated as positive or negative on a validation set.

Limitations of AUC-based constraints. The equality between two AUC’s constrains the
distributions involved. Specifically, from the mean value theorem, it imposes an equality point for
the ROC curves involved. However, that point is unknown a priori. Many applications — and in
particular biometrics — focus on the performance of the system for small false positive rates, i.e.
specific regions of the ROC curve. Enforcing the equality of ROC curves in those regions implies
that the classifiers obtained by thresholding the score are fair in a classification sense. To enforce
ROC’s to be equal in a specific region, we can focus on a few selected points, which is motivated
by discrete approximation results. For these reasons, we introduce ROC-based constraints, which
enforce the equality of two ROC curves at specific points.

Learning under ROC-based constraints. Consider the ROC curves between the negatives
and positives of each sensitive group, i.e. ROC y© yo and ROC their deviation to the
diagonal writes:

a.at

AF@(S) = ROCFS(U),F&) (OZ) — Q,

for F' e {H,G}. Instead of AUC-based fairness constraints, we enforce Ap,(s) = 0 with specific
values ap = [ag), . ,a%mF)] of a for any F € {H,G}. For that matter, introduce a loss L, that
incorporates those as constraints with strength Ap = [)\%1)7 e )\%mF)] for F e {H,G}, as:

mg . meg .
LA(S) = AUCHS,GS - ];1 /\%)‘AH,O‘S@) (S)‘ - ];1 )‘(G) ’AGﬂg) (S) s
where A := (a, Ay, Ag). We extend our generalization guarantees to ROC-based fairness con-
straints with an uniform control of the ROC curves. To prove the result, we consider an of
empirical processes indexed by the family of points a € [0,1]. We also propose a strategy for
optimization that is analogous to the one used for Eq. (1.19). Our strategy features threshold
parameters, that are modified in the same way as c.

Experimental results. We provide strong empirical evidence of our approach. Fig. 1.2 gives an
overview of the fairness versus accuracy trade-offs achieved with our methods on specific data. As
more restrictive fairness constraints are introduced in our experiments, we observe simultaneously
that: 1) the area under ROCy, ¢, — i.e. the AUC as a ranking accuracy measure — decreases,
and 2) the conditional distributions of the score change coherently with our fairness constraints.
Notice that, for high scores, the difference in the conditional distribution of the score between
sensitive groups is much higher with AUC-based constraints than with ROC-based constraints.

In conclusion, we have proposed new approaches to tackle algorithmic fairness in ranking. First,
we regrouped AUC-based constraints under a single general definition. Then, we proposed
theoretical guarantees, and a practical method for learning with any of those constraints by
gradient descent. Afterwards, we pointed at the limitations of AUC-based constraints, and
proposed a ROC-based approach that corresponds better to operational settings. Finally, we
extended our generalization guarantees and practical optimization method to the new and more
flexible ROC-based constraint.

1.6 Perspectives

In conclusion, the thesis addresses important problems in biometrics from the point of view of
statistical learning theory. Our work proposes original ideas for these problems, and supports
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Figure 1.2: ROC curves obtained respectively: by learning a score without constraint, with
the AUC-based constraint AUCH<o> o = AUCH<1) O and with a ROC-based constraint

parameterized to obtain ROC .« F(l)(a) = o for any o € [0,1/4] and any F € {H, G}.

those ideas with theoretical results. These results can be interpreted as security guarantees,
that hold under probabilistic assumptions. Our work is a much-needed answer to the rapidly
increasing volume of experimental machine learning literature that biometrics researchers have
to follow. Biometric identification, and facial recognition in particular, incarnate many machine
learning topics simultaneously, such as pairwise learning, sample bias or ranking. For this
reason, we considered stylized versions of those problems, as their simultaneous examination
would obscure our discourse, and runs the risk of being disregarded as anecdotal by the machine
learning community. The richness of the topics tackled by the thesis is a result of this imperative.
Broadening this spectrum could be envisaged, for example by considering the extension of ranking
the best criteria (Menon and Williamson, 2016, Section 9) to the similarity ranking problem
presented above.

From a biometrics perspective, the most important perspective in this thesis is to realize the
potential impact of the methods presented, by providing strong empirical evidence of their
relevance in practical settings. Indeed, while the rapid adoption of machine learning techniques
by private companies has boosted the growth of the field, it also directed most of the attention to
papers that propose unequivocal solutions to specific industrial problems. A notorious example
for face recognition is Schroff et al. (2015). In that context, the promotion of this work will require
finding and presenting pedagogically large-scale experiments that address precisely practical
use-cases, which is a promising direction for future work.

Finally, we could extend the different topics considered in the thesis. In the context of fairness for
ranking, one of the limitations of our analysis comes from the absence of an analytical expression
for the optimal score function under a fairness condition. However, it is provided in the case
of fair regression by Chzhen et al. (2020) for example. In bipartite ranking, overcoming this
hurdle would pave the way for an extension of the partition-based algorithms of Clémengon and
Vayatis (2009) to learning under fairness constraints. Another possibility concerns the extension
of the techniques presented here to the case of similarity ranking. Indeed, that extension gives
a framework that matches operational considerations in biometrics very closely, and would be
justified by the current interest in methods to explicitly correct biases for facial recognition. The
experimental component of that work would be supported by the availability of well-suited face
databases (Wang et al., 2019). Another possibility is to address the limitations of our work on
weighted empirical risk minimization, by considering cases where the nature of the difference
between the train and test set is not covered by our work. For example, in Sugiyama et al.
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(2007), the authors propose to estimate the likelihood ratio using a small sample of the test set
as auxiliary information. Besides the above examples, more extensions of each topic in the thesis
could be considered.

In conclusion, the richness of the issues that arise in biometrics is fertile grounds for new theory
and new practices in machine learning. This richness spurred the creation of this thesis and can
inspire future research.



Part 1

Preliminaries

37






Chapter 2

Statistical Learning Theory

Summary: This chapter is a short introduction to statistical learning theory,
which focuses on the derivation of finite-sample bounds on the generalization
error for the binary classification problem. All of the generalization guarantees
proven in the thesis are modeled after those presented in this chapter. Precisely,
understanding this chapter is essential to derive all of the theoretical results
of Part IIT (Chapter 8, Chapter 9 and Chapter 10), to all bounds of Part I
(Chapter 3 and Chapter 4), and to our similarity ranking guarantees (Part II -
Chapter 5). In the chapter, we first present the probabilistic setting associated
to binary classification and the associated risks. To bound the excess risk of the
empirical minimizer, we introduce: a few basic concentration inequalities, as
well as strategies to relate the excess risk to the complexity of a proposed class.
Those results enable us to derive generalization bounds that are independent
of the distribution of the data. Next, we address the looseness of those
bounds with more involved concentration inequalities. Combined with noise
assumptions on the distribution of the data, those inequalities imply fast and
distribution-dependent bounds on the generalization error. As the problems
introduced in the thesis can not be studied in the framework presented in this
chapter, we delve into the necessary notions to extend those results. Finally,
we detail the involvement throughout the thesis of the results presented here.
We refer the reader to Bousquet et al. (2003), Boucheron et al. (2005) and
Gyorfi (2002) for more detailed introductions on statistical learning theory.

2.1 Introduction

Statistical learning theory is described in Bousquet et al. (2003) (Chapter 1) as a mathematical
framework for studying the problem of inference, that is of gaining knowledge about some modeled
phenomenon from data. It can be considered as a mathematical tool that justifies the soundness
of performing machine learning, i.e. of using data collected in some specific context, e.g. in
the past, to make decisions in another context, e.g. in the future. For that to be sensible, one
has to make assumptions as to how the data collected — called training data — relates to the
testing data, and those assumptions are referred to as inductive bias. Those assumptions express
naturally in a probabilistic language. A common probabilistic assumption is that all observations
are independent and originate from the same distribution (i.i.d.). Since risk measures in machine
learning are usually mathematical expectations of a loss function, the i.i.d. assumption implies
that natural estimators of that true risk write as averages of the loss on the training data.

Statistical estimation has extensively studied the convergence of standard averages. While
classic statistical literature focuses on their asymptotic properties as the sample size grows to
infinity (van der Vaart, 2000), the limitation of that analysis for finite samples has lead authors
to quantify the random fluctuations of finite averages of i.i.d. variables with concentration
inequalities (Boucheron et al., 2013). As a result, recent theoretical results in statistical machine
learning originate from bounds on the deviation between a finite-sample estimate and a target

39
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value, that hold with some probability (Boucheron et al., 2005).

In machine learning, authors have shown that the difference between the true risk of a minimizer
of the empirical risk and that of a reference solution can also be bounded using concentration
inequalities. In this thesis, we refer to those bounds as learning bounds/rates, or as general-
ization bounds/quarantees/rates, This chapter details the derivation of such bounds for binary
classification, the flagship problem in machine learning.

Firstly, Section 2.2 details the context and mathematical framework necessary to introduce
learning bounds. Secondly, Section 2.3 shows how to derive an uniform learning bound, i.e.
bounds that do not depend on the distribution of the data. Those bounds hold for the most
complicated distributions P possible, but tend to be quite loose for smooth distributions. Thirdly,
Section 2.4 responds to this weakness by deriving tighter bounds under mild assumptions on
the data. Finally, Section 2.5 discusses the extension of such results to the more complicated
statistics involved in the thesis and indexes the uses of the tools and results of this chapter in the
thesis.

2.2 A Probabilistic Setting for Binary Classification

Statistical learning considers data that belongs to a input space X, also called feature space,
that is often a d-dimensional Euclidean space, i.e. X = R? That information serves to gain
knowledge about some value that belongs to an output space ). To study the relationship
between the collected features and the output value, those are modeled as a pair of dependent
random variables r.v. (X,Y) € X x ) that follow some unknown joint probability distribution P
defined on a probability space (9,.4,P). We refer to the two first chapters of Shorack (2000) for
a thorough definition of these mathematical objects. The random variable Y is referred to as the
output r.v., while X is referred to as the input r.v.. We introduce the distribution of X as F,
called the marginal distribution of X (Papoulis, 1965, Chapter 6, page 171). Mathematically,
statistical learning focuses seeks to recover some information about distribution of the output
r.v. Y for any possible value of the input r.v. X, i.e. about the conditional random variable
Y|X =z for any z € A, with A < X such that (s.t.) P{X € A} = 1. The probability distribution
P can be decomposed as F' x Py |x, with Py|x the conditional distribution of Y given X. The
conditional distribution Py |x is referred to as the posterior probability of Y, and its existence is
justified in Shorack (2000) (Chapter 8, Theorem 5.2).

Learning with binary output Y. Many learning problems assume that the output random
variable Y is binary, i.e. ) = {—1, 41}, such as binary classification or bipartite ranking, that
last problem being the subject of Chapter 3. Under that assumption, the posterior probability
Py | x is summarized by the mapping 7 with:

n: X —[0,1],
z—P{Y =+1|X =2z},

which is referred to as the regression function or as the Bayes score in the bipartite ranking
literature. The distribution P is completely characterized by the pair (F,n). Another way to
specify P is to define the proportion of positive instances p = P{Y = +1} and the distribution
of the conditional random variables X|Y = y, denoted as G for y = +1 and as H for y = —1.
Then, the two characterizations are related by the identities G = nF/p, H = (1 —n)F/(1 — p)
and p = {n(z)dF(z). They imply F = pG + (1 — p)H and n/(1 —n) = pG/((1 — p)H).

Example 2.1. To illustrate this section, we provide an example with X = [0,1]. We introduce a
posterior probability n, that depends on the parameter a € (0,1): Yz € [0,1],

1 1 l-a
n(z) = 5t isgn(Qa: — 1)1 — 2x] =

See Fig. 2.1(a) for a representation of the characterizations of P for a = 1/2.

Binary classification. We now focus on the binary classification problem, and refer to Section 2.5
for a discussion on the extension of those results to other settings. The goal of binary classification
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Figure 2.1: Representation of Example 2.1 with a = 1/2. the left-hand side figure represents
the different possible parametrizations of P, namely (F,n) and (p, G, H) (we omit p = 1/2 here).
As F, H,G are all absolute continuous measures, we represented the Radon-Nikodym derivative
w.r.t. the Lebesgue measure of those distributions (Shorack, 2000, Section 2, Chapter 4). On the
other hand, the two right-hand side figures represent the approximations of G and H that we
obtain using histograms of n independent realizations of (X,Y") with n = 200 and n = 1000.

is to find a function g : X — Y = {—1, +1} in a class of measurable candidate functions G that
minimizes the misclassification error R(g), with:

R(g) :=P{g(X) # Y}
The following proposition characterizes the best classifier in the set of all measurable functions.

Definition 2.2 (Bayes classifier).
The Bayes classifier is defined as the function g* : X — Y s.t.:

VeeX, g¢*():=2 In(x)>1/2} -1

For any measurable g : X — Y, we have R(g*) < R(g).

Furthermore, we have the following decomposition of the excess risk:
R(g) = R(g*) = E[|2n(X) — 1] - {g(X) # ¢g*(X)}]. (2.1)
Proof. Note that:
R(g) = E[E[I{g(X) # Y} X]] = E[n(X) + (1 - 2n(X)){g(X) = +1}].
Since: for any z € X and g: X — V),
(1= 2n(x)) Mg(z) = +1} = I{g* () = +1}) = [2n(z) — 1| - g (z) # g* ()},

we have that R(g) > R(g*) for any measurable g. O

The Bayes classifier makes classification mistakes unless the classes are separable. Indeed, note
that R(¢g*) = E[min(n(X),1—n(X))], which means that g* has a positive risk unless n(X) € {0,1}
a.s.. A sensible goal when selecting a candidate function in G is thus to find g € G with R(g) as
close as possible to R(g*), which is measured by the notion of excess risk, defined as:

Remark 2.3. The Bayes classifier for Example 2.1 is the simple function x — I{x > 1/2}. In
that case, it belongs to the simple proposed class of functions Ggump that consists of all of the
decision stumps on [0, 1], i.e. Goump = {x — a-sgn(z —h) | he[0,1],a € {—1,+1}}.

Approximation error. Unlike in Remark 2.3, in usual settings, the class G is not large enough
to contain the Bayes classifier g*. Introduce any minimizer g' of Rin G, i.e. g' € arg ming.g R(g).
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Then, the gap in performance between g% and ¢* is quantified by the approzimation error, defined
as:

R(g") — R(g*) = 0.

Controlling the approximation error generally requires an assumption on the smoothness of the
target function. To introduce this type of assumption, the regression function 7 can for example
be assumed to belongs to a Sobolev space (Jost, 2011, Appendix A.1). While results exist in the
case of regression Smale and Zhou (2003), bounding the approximation error in classification
remains an open problem.

Generalization error. Since P is unknown, we cannot directly measure the risk R. The general
idea of statistical learning is to use a notion of empirical risk to approximate R. Introduce
a sequence of n i.i.d. pairs with the same probability distribution as (X,Y), i.e. D, =
(X3, V), bl P, we define the empirical risk R,, on the data D,, as:
1 n
Ry (g) = - D {g(X;) # Vil (22)
i=1
We denote by g,, the minimizer of R, over G. The precision of the approximation of R by R, —
and as a result, the choice of g, — depends on the difference between the empirical distribution
and the true distribution, illustrated in Fig. 2.1. A quantity of interest is the risk R(g,) of the
minimizer of the empirical risk, as it quantifies the performance of the classifier learned from
data. Observe, that, since R, (g,) < R,(g") by definition of g,,, we have:

E(gy) < R(g") — R(g*) + R(gn) — Ru(gn) + Ru(g") — R(g"),
R(g") - R(g*) + 2825\1%(9) — R(g)|. (2.3)

NN

Eq. (2.3) shows that one can bound the excess of risk of the empirical minimizer by the
approximation error plus the uniform deviation &,(G) := supg|Rn(g9) — R(g)| of R.(g) — R(g)
over G, which quantifies the generalization error. The bound can be seen as a formalization
of the bias-variance tradeoff presented in Domingos (2012), where the bias term corresponds
to the approximation error, while the variance corresponds to the generalization error. When
we increase the size of the proposed family G, the approximation error decreases, while the
generalization error increases.

PAC-bounds. PAC (probably approxzimately correct)-style bounds are bounds that are satisfied
for any outcome w € Ay, for some As < Q with P{As} = 1 — 4. The learning bounds presented
throughout the thesis consist in PAC bounds for similar types of uniform deviations over diverse
families of functions. All of the bounds of the thesis concern the generalization error.

2.3 Uniform Learning Bounds

Most learning bounds are based on the Chernoff bound, which bounds the tail P{Z > t} of a r.v.
Z using its moment generating function \ — E[e*?], as shown below.

Proposition 2.4 (The Chernoff bound). (Boucheron et al., 2013, section 2.1)
For any real-valued r.v. Z and any t € R,

P{Z>1} < inf E[eM0] = inf (B [MZE2D | . MELA-0) (2.4)

Proof. The proof is a simple combination of an increasing transformation with Markov’s inequality.
Let A > 0, then ¢t — e is increasing and the simple bound I{z > 1} < z holds for any x € R,
hence:

P{Z >t} =P{e* > M)} =E []I{eMZ*t) > 1}] <E [e“Z*”] : (2.5)

and minimizing the right-hand side of Eq. (2.5) gives the result. O
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By substituting Z with &,(G) in Eq. (2.4), we see that controlling the uniform deviation can
relies on a combination of two separate results. Specifically, we rely on a result on E[Z], a term
that measures the expressivity of the proposed class G, and on a term Z — E[Z], a term that
measures the robustness of the process of selecting g from data. For sensible families G, both
of these quantities decrease to zero when n increases, but with different convergence speeds.
Typically, the parameter X is selected to balance the speeds of convergence of the two terms.

Section 2.3.1 presents basic concentration inequalities, that are required to study the terms E[Z]
and Z — E[Z] where Z = &,(G). The convergence of E[Z] results from the limited complexity
of the proposed class of functions G, and we present the related mathematical formalization in
Section 2.3.2. Finally, Section 2.3.3 exploits the results of Section 2.3.2 and the McDiarmid’s
inequality of Section 2.3.1 to conclude. It presents a first generalization bound.

2.3.1 Basic Concentration Inequalities

Three distinct but related types of presentation exist for any result of Section 2.3.1. First, two
equivalent formulations exist for presenting bounds on the tail P{Z > t} of a r.v. Z. Precisely,
consider a bound on the tail of a r.v. Z that writes P{Z > t} < f(¢), and define t5 as the solution
intof 6 = f(t) with some § > 0. The bound P{Z > t} < f(t) is then equivalent to a simple
inequality of the form Z < t;, that holds with probability (w.p.) larger than (=) 1 — 4. For
example, Corollary 2.6 below is provided as such. Another type is as a bound on the moment
generating function t — E[e!?] of a r.v. Z, which relates directly to the tail of Z with Chernoff’s
bound (Proposition 2.4). The moment generating bound implies tail bounds, and all theorems
can be stated in any of the three forms.

The most famous concentration inequality is Hoeffding’s inequality (Gyorfi, 2002, Theorem 1.2),
a PAC bound of the order O(n~'/?) on the deviation of the mean of bounded i.i.d. r.v.’s from
their expectation. It stems from a simple bound on the tail P{Z > ¢} of a bounded random
variable Z, a property introduced in Gyorfi (2002) (Lemma 1.2) and presented in Lemma 2.5
below. The proof of Lemma 2.5 is the beginning of the proof of the Hoeffding inequality of Gyo6rfi
(2002) (Lemma 1.2).

Lemma 2.5 (almost Hoeffding’s inequality).
Let Z be a random variable with E[Z] =0 and a < Z < b a.s.. Then fort > 0:

E[etz] < et2(b—a)2/8.

Corollary 2.6 (Hoeffding’s inequality). B
Let Zy,...Zy be n € N* q.4.d. rw. such that a < Zy < b. Denote their mean by Z, =
(1/n) X", Z;. Then for any € > 0, we have with probability (w.p) at least 1 — e,

Zo~EZ] < (b ap/ B,

Proof. By Chernoff’s bound, see Proposition 2.4, we have:

P{Z, —E[Z,] > t} < ;1;%8”“1@ [ek(z"fE[Z"])] ' (26)

The independence between the Z;’s, see Shorack (2000) (Chapter 8, Theorem 1.1), followed by
Lemma 2.5, implies that:

E [eA(Zn—]E[Zn])] _ HE [e(A/n)(Zl—E[Zl])] _ N (b—a)*/(8n)
i=1

Minimizing the r.h.s. of Eq. (2.6) in X\ gives:
P{Z, —E[Z,] > t} < e 2" /(0=0)", (2.7)

Inverting that bound, i.e. solving in ¢ such that ¢ is equal to the r.h.s. of Eq. (2.7) implies the
result. O
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We can bound the tail of |Zn —E[Z,] | using the union bound — also referred to as the subadditivity
of measures or Boole’s inequality (Shorack, 2000, Chapter 1, Proposition 1.2) — between
Corollary 2.6 and its application to the family —Z;,...,—Z,. It writes:

P{|Z, — E[Z,]| > t} < P{Zn — E[Z] > t} + P(E[Z,] — Zy, > 1} < 2e7 27/ (=0,

The Hoeffding inequality on its own implies guarantees for finite families of functions G, as
presented in Bousquet et al. (2003) (section 3.4) and shown in Corollary 2.7 below:

Corollary 2.7. (Bousquet et al., 2003, section 3.4)
Assume that G is of cardinality N. Then, we have that: for any 0 > 0 and n € N*, w.p. = 1—9,

R(gn) — R(g") < q/%log (Qé\[)

Proof. The union bound implies:

Pimax|R,(g) — R(g)| >t =1=P3 | ] ([Rul9) - R(g)l <t) ¢\
9eg

9€g
>1- Y P{Ru(g) - R(g)| < t}.

9geg

Applying Corollary 2.6 gives:

P{rgl&xmn(g) — R(g)| <t} < Y P{|Ru(g) — R(g)| <},
: geg

042
<2N€ 2t n7

and inverting the bound gives the result. O

The result presented in Lemma 2.5 implies bounds on the expectation of the maximum of a family
of random variables, as shown in Lemma 2.8 below. It is useful when considering minimizers of
the empirical risk, to upper-bound the value of E[£,,(G)] presented in Section 2.1.

Lemma 2.8. (Gyorfi, 2002, Lemma 1.3)
Let 0 > 0, and assume tQtht Z1y ey Zm are m € N* real-valued r.v.’s such that for any t > 0 and
1<j<m,E[e!%] <et 7 /2, then:

E [maXZj] < o+/log(2m).

js<m

We refer to Gyorfi (2002) (Lemma 1.3) for the proof, as well as the remark that the tail of
max,<m|Z;| is bounded by applying Lemma 2.8 to the family {Z1,—Z1,...,Z,,, —Z,} of 2m
elements. Now that we have presented inequalities to deal with the term E[&,(G)], we introduce
one that controls the deviation of &,(G) from its mean, and refer to Gyorfi (2002) (Lemma 1.4)
for the proof.

Theorem 2.9 (McDiarmid’s inequality). (Gyérfi, 2002, Lemma 1.4)
Let Zy,...,Z, be a collection of n € N* i.i.d. random variables. Assume that some function
g : Im(Z1)™ — R satisfies the bounded difference assumption:

/ .
sup ’g(zl,...zn)—g(zl,...,zi,...,zn)’<cz-, 1<i<n,
21,-.,2n€IM(Z7)
zieIm(Zy)

then, for allt > 0:

P{g(Z1, ., Zn) = Blg(Z1,. ., Za)] > 1} < exp{‘f’fZQ}.
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2.3.2 Complexity of Classes of Functions

This section presents several ways to control the complexity of a class of proposed functions G,
referred to as capacity measures in Boucheron et al. (2005). Those include Rademacher averages,
the concept of shatter coefficient and VC' dimension, as well as covering numbers. First, we
introduce the notion of Rademacher average and relate it to the notion of VC dimension. For
an introduction to covering numbers for statistical learning theory, we refer to Boucheron et al.
(2005) (Section 5.1).

Definition 2.10 (Rademacher average).
Let G be a set of binary classifiers, i.e. Vge G,g: X — {—1,4+1}. The Rademacher average of G
1s defined as:

R, (G) = [sup Zozﬂ{g ) # Y3}

geg |1

| (X77 le)?1‘| )

where o = (0;)"_ is a set of n i.i.d. Rademacher variables, i.e. P{o; = +1} = P{o; = —1} = 1/2
for anyie{l,...,n}.

The Rademacher average measures the capacity of a family of functions to fit random noise, and
bounds the expectation of &,(G), as shown in Proposition 2.11 below.

Proposition 2.11. For any class of binary classifiers G and any n € N*, we have:

E [supmn(g) - R<g>|] < 2E [, ()]

9€g

Proof. The proof is based on a trick called symmetrization, as presented for example in Bous-
quet et al. (2003) (Section 4.4). It requires the introduction of an unobserved sample D), =

(X[s,Y/s) sl P, referred to as ghost sample or virtual sample. We denote by R/, the estimate
of the same form as Eq. (2.2), but estimated on D).

Using the simple property sup E[-] < E[sup(-)], followed by the triangle inequality, gives:

|

E[£.(9)] = [Sup|R E[R;(g)]\g] [Sup|R R;(g)\} :

=Y 9eg

<E sup
9€g

< 2E[R,.(9)].

3

32 ({g(X;) # i} — {g(X. )#Y}‘|XZ,Y)

n i=1

O

Remark 2.12. If X is a continuous random wvariable and G is the family of all measurable
functions, we have: R, (G) = 1/2 a.s. It follows from the observation that: we have almost surely.

R, (G) = % ‘E [max <Z Oiym — Zal)} > %,
im1 i=1

The result implies that the bound in Proposition 2.11 is uninformative.

On the other hand, an estimation of the Rademacher average of Goump (see Remark 2.3) gives,
by averaging over 200 random draws of the o;’s, values of 0.13 for n = 100 and 0.04 for n = 1000.
It shows that, for simple families of functions, the Rademacher average decreases quickly as n
grows.

The notion of Rademacher average is a standard analysis tool and is involved in many important
results. Those include the derivation of sharp bounds for the supremum of empirical processes
(Gyorfi, 2002, Section 1.4.6) or the derivation of data-dependent bounds (Boucheron et al., 2005,
Theorem 3.2). However, it does not relate directly to simple properties of the proposed family.
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Introduce the shatter coefficient Sg(n) of a family of functions G as the maximal number of ways
to split any collection of n elements in X x Y with G. Formally:

Sg(n) = sup H({g(z1) # y1}, - {g(xn) # yn}) | g € G} (2.8)
{(@ay)} 7 €(Xx )

Note that the shatter coefficient does not depend on the sample D,,, and is bounded by 2™. A
set of n points is said to be shattered by a family G if its shatter coefficient is equal to 2", with
the convention that the empty set is always shattered.

Lemma 2.8 relates the Rademacher average to the shatter coefficient, which in turn enables us
to replace the supremum over G with a maximum over a set of Sg(n) vectors, as detailed in
Corollary 2.13 below.

Corollary 2.13 (Massart’s Lemma). (Gyorfi, 2002, see the proof of Theorem 1.9)
Let G be a class of measurable family of binary classifiers, i.e. for any g€ G, g: X — {—1,+1}.
For any n € N*, we have:

R, (G) < w.

n

The combination of Proposition 2.11 and Corollary 2.13 is referred to as the Vapnik-Chervonenkis
inequality (Gyorfi, 2002, Theorem 1.9, page 13). When the class G is finite of size N, then
Sg(n) < N, which implies a bound on E [sup,cg|R. — R|] that decreases in O(n~%?). The
shatter coefficient gives a simple bound on the Rademacher average by removing the expectation.
However, it depends on n and does not have an intuitive form for simple families of functions.
On the other hand, the VC-dimension is intuitive and summarizes the complexity of a class of
functions by a single coefficient.

Definition 2.14 (VC-dimension). (Bousquet et al., 2003, Definition 2, page 189)
The VC-dimension V of a proposed class G is defined as the maximum number of points that a
class can shatter, i.e. as the largest n € N* such that:

Sg (n) =2"
Any class of functions with finite VC-dimension is called a VC-class of functions.

Remark 2.15. The VC-dimension of the set of decision stumps introduced in Remark 2.3 is 2, as
one can always separate two distinct points, but not the set {(0.2,+1), (0.3, —1),(0.4,+1)} € Xx Y.
We refer to Mohri et al. (2012) (Section 3.3, pages 41 to 45) for many examples of proposed
families and a discussion on their VC-dimension.

The following lemma relates the VC-dimension to the shatter coefficient.

Lemma 2.16 (Vapnik-Chervonenkis-Sauer-Shelah lemma).
(Bousquet et al., 2003, Lemma 1, page 190)
Assume that G is a VC-class of functions with VC-dimension V. Then: for alln e N,

Sg(n) < éo <Z) <(n+1)V.

The last inequality of Lemma 2.16 is simply a consequence of the binomial theorem:

(n+1)Y i nk VI i &G a1 i <n>
n+ = T = - = — Ty = )

= k' (V —k)! = k! k:l( — k)L E! = \k
as detailed in Gyorfi (2002) (Theorem 1.13, page 19). Even though Gyorfi (2002) also contains a
proof of the first inequality, we refer here to the clearer proof of Shalev-Shwartz and Ben-David
(2014) (page 74, lemma 6.10).

All of the results of Section 2.3.2 come into play to control the quantity E[£,(G)] introduced
in Proposition 2.4. They are necessary to derive a first, basic learning bound, presented in the
section below.
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2.3.3 Uniform Generalization Bounds

By joining the results of Section 2.3.2 to control E [£,,(G)] (Proposition 2.4) with Theorem 2.9
for the deviation of &,(G) to its mean, we can derive a simple uniform learning bound.

First, combining Proposition 2.11, Corollary 2.13 and Lemma 2.16 gives Proposition 2.17 below.

Proposition 2.17. Assume that G is a VC-class of functions with VC-dimension V, then, for
any n € N* we have:

8log(2) + 8V log(1 + 2n)
- .

5O <1

Proposition 2.17 gives a bound on E [£,,(G)]. We now deal with the other term in Proposition 2.4.
The following corollary is a simple application of Theorem 2.9 to the random variable e.

Corollary 2.18. Let G be a class of binarybe classifiers. With Z = &£,(G) = supeg|Rn(g) — R(9)|,
we have that, for any n € N*:

E[ AZ- IE[Z])] /8

Proof. Introduce R), as the estimator where for a fixed ¢ € {1,...,n}, (X;,Y;) was substi-
tuted by some value (X, Y/) € X x Y in the estimator of the risk R, as well as &/ (G) :=
sup,eg| R, (9) — R(g)|. Simple triangle inequalities for the absolute value, combined with usual

properties of the supremum imply:

1€.(G) — £,(9)] < Sglellg)‘Rn(g) - R, (9)],

1 1
— I i} -1 Y/} < -,
nsup| {g(X0) # Vil =Hg(X)) # Y/} < —
which implies the result with Theorem 2.9. O

Joining the results of Proposition 2.4 with those of Proposition 2.17 and Corollary 2.18 gives
Proposition 2.19 below. Note the usual order in O(n~'/?) for statistical learning theory, as the
term in log(n) is negligible in front of the other terms. A more advanced technique for controlling
the complexity of G, called chaining, gives sharper bounds in O(nfl/ 2) without the logarithmic
term log(n). Here, we report that result without the proof, but refer to Gyorfi (2002) (Theorem
1.16 and 1.17) for it.

Proposition 2.19. (Boucheron et al., 2005, Theorem 3.4)
Let G be a class of binary classiﬁers Assume that G has finite VC dimension V, then: for any
0>0andneN* wp. =1-96

Rign /210g 2log (1/4) \/810g +8V10g(1+2n)

A more refined version of this mequalzty can be proven using a chammg argument, as explained
in Boucheron et al. (2005) (Theorem 3.4 therein) and proven in Gyorfi (2002) (Section 1.4.6). It
states that: for any § >0 and ne N*, w.p >1—

oty (BT [T

where C > 0 is an universal constant.

Proof. It follows from Eq. (2.3), that:
P{R(gn) - R(g") > t} <P{2-£.(9) > 1}

Combining Proposition 2.17 and Corollary 2.18, then minimizing the bound in Proposition 2.4 in
A gives, with Cy,, = 8log(2) + 8V log(1 + 2n):

P{E,(G) > t} < exp{ (ﬁt@f}. (2.9)

Inverting the bound gives the result. O
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While the bound holds for any possible probability distributions P, it is loose for smooth distri-
butions. Indeed, in many cases, the uniform deviation of the empirical risk sup .g|Rn(g) — R(g)|
over G is a very poor bound for R(g,) — R(g'), as mentioned in Boucheron et al. (2005) (Section
5.2). The looseness of the bound of this section is illustrated in Remark 2.20.

Remark 2.20. For the distributions defined in Example 2.1, we illustrate in Fig. 2.2 the bound
of Proposition 2.19 for the family of decision stumps in R as proposed family G.

Firstly, observe that the bound is very loose. Our distribution is not very complicated and our
proposed family Gsymp 15 very favorable for the problem at hand, which may explain that fact.

Secondly, while the order of the slope is the same for any distribution P, the error rate seems to
decrease faster when a is close to 1 than when a is close to 0. Precisely, the learning rate for
easily separated distributions seems faster than O(nil/Q). It is proven in Section 2.4.
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Figure 2.2: Boxplot of the regret over 100 generations of a dataset D, for three selected values
of the parameter a and different values of n, compared to the bound derived in Proposition 2.19.
See Remark 2.20 for more details.

2.4 Faster Learning Bounds

This section introduces the derivation of learning rates faster than O(n~'/2) under a noise
assumption on the distribution of the data. Firstly, we introduce concentration inequalities
that involve the variance of random variables. Secondly, we introduce noise conditions, and
explain how they induce an upper-bound on the variance of the excess loss. Finally, we show that
combining these two first results gives a fixed-point inequality, which implies fast learning rates.

The methodology presented here is limited to finite classes of functions G and to problems for
which the Bayes classifier g* belongs to G. In this section, we also discuss the generalization of
those results to general classes of functions of controlled complexity, as well as to those that do
not contain the Bayes classifier.

We introduce the family F as the family of the excess losses of all elements in G. Formally, the
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family of functions F satisfies that: for any f € F there exist some g € G, such that,
FX,Y) =T{g(X) # Y} - I{g"(X) # Y}.

The bound of Proposition 2.19 relies on the uniform (for any g € G) boundedness of the random
variable f(X,Y’). However, in many situations, as we choose a candidate g that approaches g*,
the variance of f(X,Y) may be very small in front of the range of f(X,Y’). Hence, the next
section presents concentrations inequalities that use the variance of random variables. They serve
to derive tighter bounds based on hypotheses on the distribution of the data.

2.4.1 Sharper Concentration Inequalities

The derivation of fast learning bounds relies on concentration inequalities that involve the variance
of random variables. The simplest one is Bernstein’s inequality (Boucheron et al., 2013, Corollary
2.11). Its proof is featured in Boucheron et al. (2013) (Theorem 2.10). We recall the simplest
formulation of the inequality here.

Theorem 2.21 (Bernstein’s inequality).
Let Zy,...,Z, ben € Ni i.i.d. real-valued r.v.’s with zero mean, and assume that |Z;| < ¢ a.s.
Let 02 := Var(Zy) and Z, := (1/n) Y,;_, Z;. For any § > 0, we have that: w.p. >1—34,

2
7. < 2clog(1/4) N 2021og(1/4)
3n n

Popoviciu’s inequality on variances gives an upper bound on the variance of a bounded random
variable (Egozcue and Garcia, 2018). Precisely, it states that the variance o2 of a r.v. Z such
that m < Z < M is smaller than (M — m)?/4. Plugging this result into Theorem 2.21 gives a
similar result as Corollary 2.6.

Bernstein’s inequality does not give a guarantee on the supremum of a family of functions, but on
an empirical mean, as does Hoeffding’s inequality. A direct consequence of Hoeffding’s inequality
were guarantees on a finite family of functions, as shown in Corollary 2.7. Similarly, only the
derivation of guarantees on a finite family of functions are a direct application of the combination
of Bernstein’s inequality and noise conditions on P.

Extending those results to more general classes of functions requires Talagrand’s inequality,
presented in Theorem 2.22 below. We refer to Boucheron et al. (2005) (Section 5.3, Theorem 5.4)
for a simple presentation of the result, and to Boucheron et al. (2013) (Theorem 7.9, page 225)
for the proof. We denote by P, the empirical distribution associated to D,,. For any f € F, we
have Pf:=E[f(X,Y)] and P, f := (1/n) >;_, f(X;,Y;)

Theorem 2.22 (Talagrand’s inequality).
Let b > 0 and set F a family of functions X — R. Assume that, for any fe F, Pf — f <b.
Then for alln e N*: w.p > 1 -6,

sup(Pf — P,f) < 2E
feF

+\/2(Supf€}' Var(f)) log(1/9) ;. 4blog(1/6)

n 3n

sup(Pf — P, f)
fer

The formulations of Bernstein’s inequality and Talagrand’s inequality are very similar. Their
main difference is that the first deals with simple means, while the second handles the supremum
of empirical processes. Note that the first term in the bound of Talagrand’s inequality can be
controlled in Section 2.3.2.

These inequalities will prove useful when combined with a clever upper bound of the variance of
the excess loss, i.e. the variance of f(X,Y’). Conveniently, that quantity is upper-bounded by a
function of the excess risk R(g) — R(¢g*), using the noise conditions introduced in the following
section.

2.4.2 Noise Conditions

The simplest noise assumption to derive faster bounds is called Massart’s noise condition
(Boucheron et al., 2005, page 340). It assumes that there is always a clear separation between the
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two classes for the classification decision. Formally, it assumes that n(X) is always far from 1/2.

Assumption 2.23 (Massart’s noise assumption).
There exists h > 0, s.t.

2n(X)—-1=h a.s.

A less restrictive assumption is called the Mammen-Tsybakov noise condition, see (Boucheron
et al., 2005, page 340). It gives a bound on the proportion of X, as measured by the distribution
of X, for which the classification decision is hard to take. It is parameterized by a parameter
a € [0,1]. If a distribution satisfies it for a close to 1, the two classes are easily separated. If it
only satisfies the bound when a is close to 0, the two classes are hard to separate.

Assumption 2.24 (Mammen-Tsybakov’s noise assumption).
There exists B > 0 and a € [0, 1], such that:

P{|2n(X) —1| <t} < BtTs.

Remark 2.25. The distribution (F,n) introduced in Ezample 2.1, and parameterized by a,
satisfies the Mammen-Tsybakov noise condition with parameters B =1 and a.

Observe that Mammen’s noise condition is void when a = 0. Also, it is implied with a = 1 by
Massart’s noise condition. Both noise assumptions imply a convenient bound on the variance
of a function f € F. as a consequence of a second moment bound (a bound of the form
Var(Z) < E[Z?]), combined with the decomposition of the excess risk presented in Eq. (2.1).
Precisely, since:

Var(£(X,Y)) < E[I{g(X) # g*(X)}], (2.10)

and R(g) — R(¢g*) =E[|2n(X) — 1|I{g(X) # ¢*(X)], Massart’s inequality implies:

Var((X,Y)) < S E[20(X) ~ 1Hg(X) # g* ()] = 3 (Rlg) ~ R(6")

Similarly, the Mammen-Tsybakov noise assumption implies the following proposition.

Proposition 2.26. Assume that Assumption 2.2/ is true, then, for any f € F, there exists ¢
that depends on only of B and a, s.t.

Var(f(X,Y)) < ¢(R(g) — R(g*))*

The proof relies on Eq. (2.10) and an equivalent formulation of the Mammen-Tsybakov noise
assumption. The equivalent formulation states that: there exists ¢ > 0 and a € [0, 1], such that:

P{g(X) # g*(X)} < c(R(g) — R(g%))" - (2.11)
Eq. (2.11) above is implied by Assumption 2.24, as proven in Bousquet et al. (2003) (Definition

7), which contains other equivalent formulations of Proposition 2.26.

Bousquet et al. (2003) (Section 5.2) contains or implies bot]h of the preceding results. Used in
conjunction with the concentration inequalities of Section 2.4.1, those results enable us to derive
fast and distribution-dependent generalization bounds by solving a fixed-point equation.

2.4.3 Distribution-dependent Generalization Bounds

The reasoning presented here can be found in Bousquet et al. (2003) (Section 5.2), but is more
detailed here. The union bound of applications of Bernstein’s inequality on each element of a
finite family of N elements, gives that: for any § > 0, w.p > 1 — §, we have simultaneously, that
for any g € G that corresponds to f € F,

| 2elog(N/) | \/war(f(X, Y)) log(N/9) (2.12)

3n n '

R(g) — R(¢9%) < Rn(g) — Ra(g™)
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Assume that g* belongs to the proposed class, i.e. that ¢g* € G. Combining Eq. (2.12) with the
implications of the Mammen-Tsybakov noise assumption (Proposition 2.26) for the empirical risk
minimizer (¢ = ¢,,) implies that: for any § > 0, w.p =1 -9,

2clog(N /o “ 2clog(N/d
R(g,) ~ Rlg") < 280D (g, — migyrny [P 1)
which is a fixed point inequality in R(g,) — R(¢*). To derive an upper-bound on R(g,) — R(g*)
from Eq. (2.13), we use Lemma 2.27 below. It relies on a generalization of Mignotte (1992)
(Theorem 4.2), which gives an upper bound on the maximum of the absolute values of the roots
of a polynomial.

Lemma 2.27. (Cucker and Smale, 2002, Lemma 7)
Let (¢1,¢2,58,q) € R"_‘f be real positive numbers. Then the equation x° —c1x9 —co = 0 has a unique
positive zero x*. In addition, z* < max{(2c;)"/C~9, (2¢c5)V/*}.

Using Lemma 2.27, we can prove a fast learning bound for finite families of functions.

Proposition 2.28. Assume that G is a finite family of N functions and that the Mammen-
Tsybakov noise assumption Eq. (2.11) is satisfied with constant parameter ¢ and noise parameter
a. For any § > 0, we have that, for any n € N*: w.p. = 1— 6,

3n

8clog(N/5) > 1/(@a) . 8clog(N/)
e Seose),

R(gn) — R(g%) < (

Proof. A straightforward application of Lemma 2.27 to Eq. (2.13), followed by the bound

max(x,y) < x + y for any x,y > 0 implies:
8clog(N/8)\ /™" 8clog(N/s

Rlgn) — Rg") < max ((g(/)) Selog(N/8) )

n 3n

< (SClog(N/é))l/(za) N 8clog(N/6).

n 3n

O

Proposition 2.28 gives a learning bound of the order O(n’l/@*‘l)), under a noise condition
parameterized by a € [0,1]. When a is close to 0, we recover the order O(n~'/2) derived in
Section 2.3.3. On the other hand, when a is close to zero, we approach the fast rate O(n=1).
The fast bounds are illustrated in Remark 2.29. The generalization of Proposition 2.28 to
non-finite families of functions is more involved, and is a consequence of Talagrand’s inequality
(Theorem 2.22). We refer to Boucheron et al. (2005) (Section 5.3) for that extension. The analysis
presented there extends to the case where g* does not belong to G. The extension is detailed in
Boucheron et al. (2005) (Section 5.3.5).

Remark 2.29. With the distributions defined in Example 2.1, we illustrate the value of the
bound in Proposition 2.28 for the finite proposed family of functions G = {i/100 | i € {0,...,1} in
Fig. 2.2.

Observe in Fig. 2.3 that the learning rate of the fast bound seems much more aligned with the
empirical learning rate than the slow learning rate of Section 2.3.

In real problems, the distribution of the data is unknown. Hence, the satisfaction of a noise
assumption can not be verified. Still, fast learning speeds justify the looseness of the bounds
derived in Section 2.3, constitute strong evidence of the soundness of learning from empirical
data, and give possible tighter generalization bounds.

2.5 Connections to Present Work

The results in this thesis are modeled after those of this chapter. However, the majority of our
work — specifically Chapter 5 and Chapter 7 of Part IT and Chapter 10 of Part ITI — tackles the
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Figure 2.3: Boxplot of the regret over 100 generations of a dataset D,,, for three selected values of
the parameter a and different values of n, compared to the fast bound derived in Proposition 2.28.
See Remark 2.29 for more details.

problems of scoring or similarity learning. Scoring concerns learning a score function s : X — R,
while similarity learning concerns learning a function s : X x X — R. Hence, both bipartite
ranking and similarity learning focus on real-valued functions. To derive generalization results for
real-valued functions, tools that control the complexity of a real-valued family of functions S are
required. In this section, we present notions that extend the results of the chapter to real-valued
functions, and detail the implications of the chapter for our results in the thesis.

VC-major classes of functions. To quantify the complexity of classes of real-valued functions,
the notion of VC-major class is used throughout the thesis. It builds on top of the notion of
superlevel-set at some level t € R, defined as {z € X | s(x) > ¢t} for some s : X — R.

Definition 2.30 (VC-major class). (van der Vaart and Wellner, 1996, Section 2.4.6)
A class of functions S such that Vs € S, s: X — R is called VC-magor if all superlevel-sets of all
functions in S form a VC-class of sets. Formally, S is a VC-magor class if and only if:

{{x e X |s(x) >t} |seF,teR} is a VC-class of sets.

Other notions to control the variations of empirical processes indexed by real-valued functions
include the notion of VC-subgraph class (van der Vaart and Wellner, 1996, Section 2.6.2). A
class of functions S is a VC-subgraph class simply if the subgraphs of all functions in S, i.e.
{(z,t) | t < s(x)}ses, form a VC-class of sets. Note that, unlike VC-major classes the set of all
subgraphs is only indexed by §. We refer to Dudley (1999) (Theorem 4.7.1) for more details on
the relationship between VC-major classes and VC-subgraph classes.

Sauer’s lemma for VC-major classes. If a major class of functions S is bounded, any
function s € S writes as a (possibly infinite) weighted sum of its major sets, as presented in
van der Vaart and Wellner (1996) (Lemma 2.6.13). That observation implies the proposition
below, an extension of Proposition 2.17 to VC-major classes.

Proposition 2.31. Assume that S is a VC-major class of functions bounded by 1, of bounded
VC-dimension V. For n € N*, introduce P, as the empirical measure associated to a sample

(X, "L P, e Py = (1/n) X", 6x,. Then:

log(2 log(1 + 2
E[suans—Ps|] - \/8 0g(2) + 8V log(1 + 2n)

seS n

The extension of VC-properties to general types of functions follows generally from permanence
properties of the Rademacher average, presented in Boucheron et al. (2005) (Theorem 3.3).

Implications of this chapter. The theory presented in this chapter is the foundation for
much of our theoretical contributions. Precisely, it is involved in the two other chapters of the
preliminaries, i.e. Chapter 3 and Chapter 4, as well as in Chapter 5 of Part II and in all chapters
of Part III.
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In Part I, the uniform generalization bounds (Proposition 2.19) and the intermediary steps of
the fast generalization bound (Proposition 2.28) are essential to the proof of the generalization
results for the pointwise ROC optimization problem considered in Chapter 3, as well as to the
guarantees for the TREERANK algorithm. Indeed, the results for bipartite ranking of Chapter 3
are modeled on the framework provided here for finite-sample statistical guarantees in usual
statistical learning theory. In Chapter 4, the uniform generalization bound (Proposition 2.19) is
extended to the case of U-statistics, as well as to their sampling-based approximation.

In Part II, Chapter 5 extends to the case of similarity ranking the pointwise ROC optimization
and TREERANK guarantees proven for bipartite ranking in Chapter 3. The proofs are based on
an extension for U-statistics of the results used for bipartite ranking in Chapter 3. Precisely, it
is based on the variant for real-valued U-statistics of the learning bounds Proposition 2.19 and
Proposition 2.28. That variant is implied by a combination of Proposition 2.31 and Chapter 4.
Incidentally, the properties of U-statistics enable us to derive fast bounds with weaker assumptions
than in the bipartite ranking case.

In Part III, the main result of our work on label ranking (Chapter 8) incorporates a variant of our
fast learning bounds (Proposition 2.28) applied to a binary classification problem. Precisely, that
variant is proven with Talagrand’s inequality (Theorem 2.22) and thus holds for general classes of
functions. The statistical guarantees of our work on weighted empirical minimization (Chapter 9)
rely on the exact same tools as Proposition 2.19, but feature weighted samples. Finally, our work
on fair scoring functions (Chapter 10) presents generalization bounds for learning real-valued score
functions. To maximize pairwise functionals, those invoke results on the supremum deviation of
U-statistics, an extension of Proposition 2.19 presented in Chapter 4. In other cases, it involves
the usual results on standard empirical processes that imply Proposition 2.19.
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Chapter 3

Selected Ranking Problems

Summary: This chapter is a short introduction to selected problems that
deal with ranking data in machine learning. Its purpose is to provide the
preliminaries to our theoretical results: on similarity ranking (Chapter 5)
and on fair ranking (Chapter 10). Additionally, it puts in perspective the
results involved in our analysis of label ranking (Chapter 8), and provides the
intuitions for our propositions for practical similarity ranking (Chapter 7).
Ranking data in a broad sense is for example encountered in: bipartite
ranking/scoring, ranking aggregation and learning-to-rank. Bipartite ranking
considers a set of elements associated to a binary label, and seeks to associate
a score to each instance, such that those with label +1 have higher score
than those with label —1. A typical application is credit scoring. Ranking
aggregation is the problem of summarizing several individual rankings by
a representative ranking. Finally, learning-to-rank associates an ordering
over candidate elements to a query, and is the usual theoretical framework
for studying search engines algorithms. In this chapter, the majority of the
results focus on bipartite ranking. Those results are finite-sample bounds,
and an extension of the analysis of Chapter 2. Precisely, we present at
length the ROC criterion, pointwise ROC optimization and the theoretical
guarantees for the TREERANK algorithm. Then, we briefly present the ranking
aggregation problem, and precise its relationship to probabilistic models for
ranking. Finally, we detail the implications throughout the thesis of the results
presented here. We refer to Menon and Williamson (2016) for a more detailed
overview of bipartite ranking.

3.1 Introduction

Rankings are a very natural way to provide information about a set of elements, which explains
the ubiquity of machine learning problems related to finding ordered sets of those elements.
The thesis relates to three different settings connected to that idea, with some papers making
interesting connections between them. Those settings are: bipartite ranking or scoring, ranking
aggregation and learning-to-rank.

The bipartite ranking/scoring problem considers a set of elements associated to a binary label, and
seeks to rank those with label +1 higher than those with label —1. This is generally performed
by learning a mapping from the input space to the real line, called a score function. For example,
this setting applies to any situation with a fixed budget to assign to the observations that are
the most likely to be positive, e.g. in credit scoring. On the other hand, the binary classification
problem described in Chapter 2 recovers a set of relevant instances, but does not compare positive
instances among one another. We refer to Menon and Williamson (2016) for an overview of
bipartite ranking.

Ranking aggregation seeks a consensus between several observed orderings of items. It relies on
finding an ordering that summarizes best all observed orderings. A flagship problem of ranking
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aggregation is social choice theory, a theoretical framework for combining individual opinions.
We refer to Korba (2018) (Part 1) for an introduction to ranking aggregation.

Finally, learning-to-rank refers to learning models that return an ordered list of instances in
a database, that are relevant for a specific query. It can be performed by learning a notion
of similarity between queries and candidate instances, and returning a list of items ordered
by decreasing similarity with the query. The design of search engines is an example of direct
application of this setting. We refer to Liu (2011) for an introduction to learning-to-rank.

In this section, we will focus first on bipartite ranking (Section 3.2) and then briefly introduce
ranking aggregation (Section 3.3). Our introduction to bipartite ranking introduces the ROC
curve, presents the problem of pointwise ROC optimization, also known as Neyman-Pearson
classification, and finally recalls the theoretical guarantees for the TREERANK algorithm for
bipartite ranking. The ranking aggregation section swiftly presents the problem and focuses on
its relation to probabilistic models for ranking. Section 3.4 details the implications of the results
of this chapter on the original work of the thesis.

3.2 Bipartite Ranking

3.2.1 Introduction

Bipartite ranking relies on the same probabilistic framework as binary classification, presented in
Chapter 2. Specifically, one considers a random pair (X,Y) ~ P in X x ) where X is the input
space, and ) = {—1,+1} is the output space. Generally the input space X is a d-dimensional
Euclidean space RY. As stated in Section 2.1, the distribution of the pair (X,Y) is completely
summarized by the pair (F,n), where F' is the marginal distribution of X and 7 is the posterior
probability n(z) := P{Y = 1 | X = x}, as well as by the triplet (p, H,G), where p is the
proportion of positive instances p = P{Y = +1}, H is the distribution of X|Y = —1 and G that
of X|Y = +1. An usual approach to bipartite ranking is to project items on the real line with a
score function s : X — R, and to return the ordering of those items by decreasing score.

To quantify the capacity of the score s to split positive from negative instances, we introduce the
distribution of the random variables s(X)|Y = —1 and s(X)|Y = +1 as, respectively:

Hy(t):= H(s(X) <t) =P{s(X) <t|Y = -1},
Gs(t) == G(s(X) <t) =P{s(X) <t |Y = +1}.

With F' = 1 — F the survival function associated to a distribution F', the quantities H(t) and
G, (t) are known respectively as the false positive rate (FPR) and the true positive rate (TPR)
at threshold ¢. Considering that an instance z is classified as positive when s(z) > ¢, they
correspond respectively to the proportion of negative instances wrongly classified as positive and

the proportion of positive instances rightly classified as positive.

The goal of bipartite ranking is to order items by a notion of quality, quantified by the probability
that an item x € X is positive, which is simply the posterior probability n(x). While one could
consider solving the bipartite ranking problem by constructing an approximation of n from data,
bipartite ranking is only interested in recovering the order induced by the posterior probability,
not in the values of the posterior probability. A widespread criterion to measure the accuracy of
the order induced by a score function is the Receiver Operating Characteristic curve (ROC) (
Definition 4 in Clémencon and Vayatis (2009)) a functional criterion defined as the parametric
curve:

R — [0,1]%,
t (Hq(t),Gs(1)) (3.1)
The above definition implies that the ROC of an increasing transform T o s of the score s is the

same as that of the score s. Since T o s induces the same order as s, the ROC only evaluates the
induced order on supp(F') of the score s, and not its value.

We formalize the order over a random sample D,, = {X;}", “5 P owith a permutation o € G,,,
as the order induced by s on D,,, with the highest score on top and ties broken arbitrarily.
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Specifically, the permutation o maps each i € {1,...,n} to the position of s(X;) in the list of
decreasing s(X;)’s, which writes:

S(Xofl(l)) =2 S(Xafl(n)%

The permutation o~! is the inverse of o, hence o~1(i) is the element in rank i for the ranking o.
Rather than a direct evaluation of the score s, the empirical version of the ROC is an evaluation
of the permutation o.

Consider an independent copy (X', Y”) of the random pair (X,Y"). If the score perfectly separates
the positives and the negatives, i.e. s(X) > s(X')|Y = +1,Y’ = —1 a.s., then the ROC curve
is included in the plot of a step function, defined as {(¢1,t2) | t1 = 0 or 3 = 1}. If the score
does not separates the positives from the negatives at all, i.e. s(X)|Y = —1 and s(X)|Y = +1
have the same distribution, then the ROC curve is included in the plot of the identity function,
defined as {(t,t) | t € [0,1]}.

As defined in Eq. (3.1), the ROC curve is not continuous in general. One approach to solve
that limitation is to consider the ROC curve as the evaluation of the score s, where the equality
s(z) = s(a’) between the score of two elements induces a random order between those two
elements. That extension connects two consecutive disconnected dots of the ROC curve with a
straight line.

Remark 3.1. With the (F,n) defined in Example 2.1 from Chapter 2. Introduce the noise

coefficient parameter a € [0,1]. Then, with s : x — x, we have Hy(t) = 2(1 —t) — G4(t), and:
Go(t) = 1—t+g[1— |1—2t\5].

A graphical representation of the ROC curves is featured in Fig. 3.1.
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Figure 3.1: Illustration of the ROC curve of the score function s : x € [0,1] — x for three
distributions with three different levels of separability of the distributions s(X)|Y = —1 and
s$(X)|Y = +1. Here, we denote by H (resp. G) the distribution s(X)|Y = —1 (resp. s(X)|Y =
+1). Here, the distributions F, H, G are all absolutely continuous, and are thus represented by
their Radon-Nykodim derivatives w.r.t. the Lebesgue measure.
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Another parametrization of the ROC curve is as the plot of the function:

ROCHS,GS : [0, 1] - [07 1],
a— Gyo H (o),

where the generalized inverse of a decreasing function f writes f=% : ¢ — sup{\ | f(\) > t}.
Introducing the definition of the generalized inverse of an increasing function f as f~1(t) =
inf {\| f(A\) = t}, we have:

H'(a)=sup{A|1—a>H,\)}=inf (A | H{(\) =1—-a}=H;'(1-a).

The quantity H;!(a) is a (1 — a)-quantile of the random variable s(X)|Y = —1, since a property
of the quantile function, specifically Lemma 21.1 of van der Vaart (2000), implies:

P{s(X)< H;'(a) |Y = -1} =P{s(X) < H;'(1—a) | Y = -1}
=H,oH;'(1-a)>1-a.

Hence, we introduce the notation Q(Z, &) to denote the quantile of order 1 — a of any random
variable Z conditioned on the event Y = —1, and we have Q(s(X),a) = H; ().

A score function s; is considered better than another score function s, whenever its ROC is
higher, i.e. when the ROC of s; uniformly dominates that of s3. Introducing the notation
ROC(s,a) := ROCpy, g, (a) for any score function s and any « € [0,1], it is verified when
ROC(s1,a) = ROC(sz, @) for any « € [0,1].

Proposition 3.3 in Section 3.2.2 below proves the existence of optimal score functions for uniform
dominance of ROC’s, and shows that n is an optimal score function. Notice that the optimal
element for the ranking problem involves the posterior probability 7, as in the binary classification
setting described in Section 2.1. Introducing the notations H* := H, and G* := G,;, we write the
ROC curve of n as ROC* := ROCyp, ¢, , and similarly the (1 — a)-quantile of n(X)|Y = —1 as
Q*(a) := Q(n(X),) = H, ! (). The invariance property under strictly increasing transforms of
the ROC implies that any score s € §*, with §* = {T'on | T : [0,1] — R is increasing }, satisfies
ROCp, ¢, = ROC*.

The order defined by the uniform dominance between two ROC curves is not total, since there
exists pairs of score functions that can not be compared. Indeed, the ROC a score function s; can
strictly dominate that of another score function sy for all values « of a subset A of [0, 1] and the
ROC of sy strictly dominate that of s; on another subset of A. Additionally, the estimation of the
ROC curve from empirical data gives a random function. Results on the estimation of the ROC
curve often involve the theory of empirical processes, as do for example the strong convergence
and strong approximations theorems for the ROC curve of Hsieh and Turnbull (1996). The work
of Bertail et al. (2008) draws on that analysis to derive a bootstrap procedure to derive tight
confidence bands for the ROC curve.

Due to these two reasons, i.e. the absence of total order on the ROC curve and its functional
nature, practitioners often consider summaries of the ROC curve instead of the full functional
criterion. The most popular one is the Area under the ROC Curve (AUC), defined below.

Definition 3.2 (Area under the ROC curve (AUC)). (Clémengon et al., 2008, Proposition B.2).
The Area under the ROC Curve (AUC) of a score function s writes:

1

AUCHS,GS = f ROCHS,GS (Oz) dao.
0

The AUC is equal to the proportion of correctly ranked pairs of independent elements. Formally,
with (X,Y) and (X', Y") i.i.d. copies of the distribution P, we have:

AUCH, ¢. =P{s(X) = s(X') | Y = +1,Y' = —1}.
We write AUC(s) = AUCH, q, for any score s, and AUC* := AUCy, q, -

The AUC encourages viewing the ranking problem as a binary classification problem over X x X
on the pairs (X, X’) with different label, i.e. that satisfies Y # Y’. In that framework, the



59 3.2. Bipartite Ranking

binary objective is (Y — Y”’)/2). The ubiquity of the AUC implies that it is often considered
as the standard performance measure for the bipartite ranking problem. Most of the papers
about bipartite ranking focus on maximizing that quantity. A theoretical analysis of the AUC
optimization procedure is provided in Clémengon et al. (2008). Many algorithm deal with
the bipartite ranking problem by optimizing the AUC, such as RankSVM (Joachims, 2002),
RankBoost (Freund et al., 2003) and RankNet (Burges et al., 2005).

The estimation of the AUC involves a special type of statistics, different in nature from the
standard averages studied in Chapter 2. Specifically, studying the empirical AUC uses estimators
called U-statistics and presented in Chapter 4, which in their simplest form are averages on
all possible pairs of elements from a random sample. Essential results for those statistics are
provided in Chapter 4. Formally, introduce a sequence of n i.i.d. pairs with the same distribution

as (X,Y), i.e. D, = {(X;,Yi)}, “%% P a natural estimator of the AUC writes:

1
nyn_

AUCH, g, = D I{s(X0) > (X))} (3.2)

Yi=+1Y;=-1

with ng := 3" | I{Y; = +1} and n_ :=n — n+.

While the AUC is a simple summary of the ROC curve, a drawback of the AUC in practical
problems is that it considers all inversions to be equivalent. For example, an inversion that
puts only one negative instance above the next positive instance that is higher on the list, will
contribute as much to decreasing the AUC if the positive instance is at the top or if in the middle
of the list, see Eq. (3.2). However, for many practical problems, having an accurate ranking is
way more important at the beginning of the list than at the bottom. Therefore, a corpus of
literature addresses the problem of ranking the best instances, which introduces many criteria
that consider errors at the top as more critical than errors at the bottom.

Those criteria include popular accuracy measures from the information retrieval community,
such as the Discounted Gain Criterion (DCG) or the Mean Reciprocal Rank (MRR) (Menon
and Williamson, 2016, section 9.2), as well as propositions from the statistical machine learning
community, such as the the p-norm push (Rudin, 2006). In Clémencon and Vayatis (2007),
ranking the best is seen through the lens of a combination of two problems: finding the best
instances and ordering that subset of instances well.

In this section, we first discuss the task of finding the optimal score function for maximizing the
true positive rate under an upper-bound « € [0, 1] on the false positive rate. We refer to this task
as pointwise ROC optimization pROC at level a. Then, we present theoretical guarantees for
pROC, that were proven in Theorem 10 and Theorem 12 of Clémengon and Vayatis (2010). Those
guarantees are modeled after those presented in Chapter 2. Finally, we recall a few results on the
algorithm TREERANK, a flexible approach for solving the ranking problem by partitioning the
input space. We refer to Clémencon and Vayatis (2009) for an extensive analysis of TREERANK.

3.2.2 Pointwise ROC Optimization (pROC)

Given a proposed family of score functions S, we define pointwise ROC optimization at level
a € [0,1] as the task of finding the score s € S and threshold ¢ € R, such that the test s(z) > ¢
has false positive rate constrained by a, and the highest true positive rate G,(t) as possible.
Formally, it writes:

Gs(t) st. Hyt) <a. 3.3
e () s (t) <« (3.3)

A solution of Eq. (3.3) is written (sq,tq). It satisfies ROC(sq, ) = ROC(s, o) for any s € S and
depends on the parameter a.

While the formulation of Eq. (3.3) involves a scoring function s and threshold ¢, the quantities
G, (t) and H,(t) are an evaluation of the classifier g :  + 2-T{s(z) > t} — 1. Hence, Eq. (3.3) was
first introduced as Neyman-Pearson classification due to its relation with the standard hypothesis
testing framework, as explained below right before Proposition 3.3. We refer to Scott and
Nowak (2005); Scott (2007); Rigollet and Tong (2011) for a detailed account of Neyman-Pearson
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classification. Introduce the family R of super-level sets of S, i.e. R := {z € X' | 5(x) > t} (5 1)esxR;
then Eq. (3.3) is equivalent to:

max G(R) st. H(R)<a. (3.4)

A solution of Eq. (3.4) is Ry, := {z € X|sq(x) > to}.

Eq. (3.3) is also very similar to minimum volume set (MV-set) estimation, an approach in
anomaly detection. MV-set estimation consists in finding a set of minimum volume, as measured
by the Lebesgue measure on the Euclidean space X', in which a random variable X € X falls
with probability greater than 1 — .. The Lebesgue measure A is a generalization of the notion of
volume to general Euclidean spaces, defined formally in Shorack (2000) (Chapter 5, Example 1.1).
Formally, with F' the distribution of the r.v. X and for the proposed family of sets A < P(X),
the minimum volume set problem writes:

min A(A) such that FA)=21-qa. (3.5)

AeA
The main difference between Eq. (3.3) and Eq. (3.5) is that the objective A(A) of Eq. (3.5) does
not have to be replaced by an empirical quantity. Indeed, the Lesbegue measure A(A) is known,
unlike the constraint F'(A) or the quantities G(R) and H(R) in Eq. (3.4), which all have to be
estimated from data. We refer to Polonik (1995, 1997) and Scott and Nowak (2006) for more
details on the minimum volume set problem. The similarities between Eq. (3.4) and Eq. (3.5)
have led authors to consider the mass volume curve, the counterpart of the ROC curve in the
context of anomaly detection. We refer to Clémencgon and Jakubowicz (2013) and Clémengon
and Thomas (2018) for more details on the mass volume curve.

The problem presented in Eq. (3.3) can be considered in the standard hypothesis testing framework,
presented in Wasserman (2010) (Section 11). In that light, consider the hypothesis Ho : Y = —1
against the alternative H; : Y = +1. The true positive rate G,(t) then corresponds to the
power of the test s(X) < t, while the false positive rate H,(t) corresponds to its type I error.
Solving Eq. (3.3) for the proposed class of all measurable functions corresponds to finding the
most powerful test for rejecting Hy at the level of significance «, i.e. the test with the highest
power and a type I error below or equal to . An application of the fundamental lemma of
Neyman-Pearson (Lehmann and Romano, 2005, Theorem 3.2.1) implies the expression of an
optimal solution of Eq. (3.3) in the space of all measurable functions. We present that solution
in the proposition below, along an expression of a notion of pointwise excess risk at level a for
the ROC curve.

Proposition 3.3 (Optimal score function).
(Clémengon and Vayatis, 2009, Proposition 6) (Clémengon and Vayatis, 2010, Proposition 5).
For any measurable scoring function s, we have:

Va e (0,1), ROC*(a) = ROC(s, ). (3.6)
Introduce the notations:

Ry = {z e X [n(x) > Q*(a)},
Ry :={zeX|s(z)>Q(s(X), )}

Consider a s.t. Q*(a) < 1, and s € S such that the c.d.f. Hs (resp. H,) is continuous at
Q(s(X),a) (resp. at Q@*(«)). Then we have:

— Q*(a)] - {RIAR; o]
p(1—Q*(a))

ROC* (a) — ROC(s, ) = LX) . (3.7)

The proof of Eq. (3.6) can be found in Clémengon and Vayatis (2009) (Proposition 6) and is
a consequence of the Neyman-Pearson fundamental lemma, proven in Lehmann and Romano
(2005) (Section 3.2). The hypothesis of continuity serves to exclude random tests, introduced in
Lehmann and Romano (2005) (Section 3.2). One can extend those results by considering a test
of the hypothesis that rejects Hy with some probability.
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Consider the decomposition of a score function s as an integral of its super-level sets. Formally:

s(z) = fo Is(z) > t} dt. (3.9)

Clémengon and Vayatis (2010) proposed to find a good solution of the ranking problem by
combining the solutions of several pointwise ROC optimization problems, as those are super-level
sets of the optimal score function 7. Eq. (3.8) suggests a simple combination strategy.

The optimal solution for binary classification, i.e. the Bayes classifier g* : z — 2-I{n(z) > 1/2}—1,
consists in thresholding the Bayes score 7 by a threshold ¢ = 1/2 to separate positive and negative
instances. Similarly, the proof of Proposition 3.3 implies that the optimal solution of the pointwise
ROC optimization problem at level o Eq. (3.3) also consists in thresholding the Bayes score
function, as the optimal rejection region of the corresponding test is R¥. In that case, the value
of the threshold is unknown, as t, = Q*(«) depends on the distribution of the random variable
n(X)|Y = —1.

Introduce the weighted classification cost for binary classification, as:
R.(g):=c-P{g(X)=-1Y =41} + (1 —¢) - P{g(X) = +1,Y = —1}. (3.9)

Eq. (3.9) can be seen as a weighted sum of the false negative rate G4(t) and false positive
rate H,(t) for the classifier defined by g : 2 — s(x) > t. The proposition below shows that
g¥:x—2-T{n(xr) >1—c} —1is a minimizer of R.(g) in the class of all measurable functions.
It is proven in a similar way as the optimality of the Bayes classifier for binary classification,
presented in Chapter 2. Its proof is thus omitted.

Proposition 3.4 (Optimal classifier for weighted classification).
For any c € [0,1], we have that R.(g9) = R.(g¥) for any measurable classification function
g: X - {-1,+1}.

The optimal solution of weighted classification also writes as a thresholding operation on the
Bayes score, with a threshold ¢, := 1 — ¢. The optimal solution of pointwise ROC optimization
Eq. (3.3) at level « is then the same as the optimal solution of Eq. (3.9) for an unknown cost
asymmetry parameter ¢ = 1 — Q*(«). Hence, a common strategy for optimal ranking is to
combine many solutions of the problem of classification with asymmetric costs, as done for
example in Bach et al. (2006).

3.2.3 Generalization Guarantees for pROC

In this section, we derive guarantees for empirical solutions of the pointwise ROC optimization
problem. We first derive an uniform learning bound, followed by a fast learning bound under a
noise assumption on the data distribution. The uniform learning bound is found in Scott and
Nowak (2005) (Proposition 1) for Neyman-Pearson classification and is a direct consequence of
Theorem 10 of Clémencon and Vayatis (2010), while the fast learning bound is Theorem 12 in
Clémengon and Vayatis (2010).

Using the same i.5.d. sample of n observations D,, as for the estimator A/U\CHS)GS in Eq. (3.2), we
introduce an empirical approximation of the empirical distribution of the negatives and positives
as H and G, respectively. Formally,

j-?\[::i 2 (in and é::i 2 5Xi’

"= v " yioh
where 4, is the Dirac distribution in z, i.e. §,(A) =1 if x € A and §,(A) = 0 otherwise.

To define an empirical ROC curve, we first introduce an estimator ﬁs of the distribution H, of
s(X)|Y = —1 and an estimator G of the distribution G, of s(X)|Y = +1, such that:

A.() = A(s(X) < 1) — ni S 1s(x) < 1},
Py

Gult) = Os(X) < t) = — ) I{s(X,) <t}

My
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Then, we can define an estimator of the ROC curve as ROC H,.G., Where:

ROCy, ¢, : [0,1] — [0,1],
a1—H, oG (1 - ).

Additionally, we introduce an empirical version of the pointwise ROC optimization problem
introduced in Eq. (3.4), defined as:

max G(R) st. H(R)<a+ ¢(n,d), (3.10)
ReR
and a solution to Eq. (3.10) is written as R, Note the presence of a tolerance term ¢(n,0) =0
in the constraint, whose function is to tolerate the variations of H (R) around H(R). Precisely,
the decomposition H(R) = H(R) + (H(R) — H(R)) implies that very often, very good solutions
of Eq. (3.4) will not satisfy the constraint of Eq. (3.10) if ¢(n,d) = 0, depending on the generated
sample D,,. Rigollet and Tong (2011) take a conservative approach and investigate Eq. (3.10)
with a negative tolerance term ¢(n,d), so that it enforces an empirical solution f?a that satisfies
the constraint H(R,) < a.
Under a complexity assumption on the proposed family S, Clémengon and Vayatis (2010) prove
learning bounds for the pointwise ROC optimization problem, as presented in Proposition 3.5
below. In Proposition 3.5, the complexity assumption is that S is a VC-major class of functions,

which means that the super-level sets R of the score functions in S form a VC-class of sets, see
Definition 2.14 and Definition 2.30 in Chapter 2.

Proposition 3.5. (Consequence of Theorem 10 in Clémengon and Vayatis (2010)).
See Proposition 1 of Scott and Nowak (2005) for the same result in Neyman-Pearson classification.)
Let ac € (0,1). Assume that:

e R is a VC-class of functions with VC-dimension V,
e ¢ =min(p,1 —p) >0,

e H, is continuous at Q*(a) and R% € R.

For all (§,n) € (0,1) x N*, set:

¢(n’5)_1<\/210g(2/5) +\/8log(2)+8V1og(1+2n)>.

n n

Then, for all (§,n) € (0,1) x N*| we simultaneously have w.p. =1 —§:
H(Ro) < a+206(n,8/2) and G(Ra) = G(R¥) — 2¢(n,5/2). (3.11)

The proof of Proposition 3.5 is slightly different than that of Clémengon and Vayatis (2010)
(Theorem 10), as the quantities H and G satisty:

i {Yi=-1,X;e R} SUUY: = +1,X, € R}
L 1Y = -1} S Y =1

thus are ratios of averages, while Clémencon and Vayatis (2010) (Theorem 10) assumed n_ and
n4 to be deterministic. However, the core argument remains the same. It relies on the fact that
PAC-style bounds for the supremum of empirical processes G (R) — G(R) and H (R) — H(R) over
R imply the bilateral control of errors presented in Eq. (3.11).

for any Re R, H(R) = and @(R) =

Proposition 3.5 recovers the standard learning bound in O(nfl/ 2) presented in Section 2.3 for
binary classification, for both the constraint and the objective, Using the same tools as in
Section 2.4, Clémencon and Vayatis (2010) (Section 5.2) prove faster speeds of convergence for
the pointwise ROC optimization problem under a noise assumption on the data given below. The
noise assumption is very similar to the Mammen-Tsybakov assumption for binary classification,
but concerns the distribution of n(x) around @Q*(«) instead of 1/2, see Assumption 2.24.
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Assumption 3.6. (Clémencon and Vayatis, 2010, noise assumption)
Let a € (0,1). There exists B> 0 and a € [0,1], s.t.:

P{n(X) - Q*(a)| <t} < B-tT.

Clémengon and Vayatis (2010) (Remark 14) explains that Assumption 3.6 is satisfied with a = 1/2
and B = 2 -sup, f*(t) as soon as 7(X) has a bounded density f*. Indeed, with F* the c.d.f. of
n(X), the finite increments theorem gives:

P{ln(X) - Q*(a)l < t} = F*(Q*(a) + 1) — F*(Q"(a) — 1) < Bt.

As in Section 2.4.2; the noise assumption (Assumption 3.6) implies a control on the variance of a
notion of excess loss, presented in the lemma below. The implication is proven in Clémengon
and Vayatis (2010), in a similar manner as Proposition 2.26 in Chapter 2, using equivalent
formulations of the Mammen-Tsybakov assumption that can be found in Bousquet et al. (2003)
(Definition 7).

Lemma 3.7. (Clémencon and Vayatis, 2010, Lemma 11)
Suppose that H, is continuous at Q* () and that Assumption 3.6 is fulfilled. Set for all Re R,
s2(R) := Var[I{Y = +1} (I{X € R¥} - I{X € R})].

[

Then we have:
VReR, sa(R)<c[p(l-Q*()(G(RE) —G(R)+Q*(e)(1—p)(H(R) —)]”.

Similarly to Section 2.4.3, the control on the variance can be used to derive fast bounds on a
finite family of functions with Bernstein’s inequality, as proven in Clémengon and Vayatis (2010).

Proposition 3.8. (Clémengon and Vayatis, 2010, Theorem 12)

Assume that the assumptions of Proposition 3.5 are satisfied and that Assumption 3.6 is fulfilled
for some a € (0,1) with noise parameter a € [0,1]. Then, for all 6 > 0, there exists C :=
C(R,0,a,p,Q*(a)) and ng := no(R, 4, o, p, Q* (), such that ¥n = ng, we simultaneously have
wp=1-4:

2+a

H(Ry) < o+ 2¢(n,6/2) and ROC*(a) — G(R,) < Cn~ 1

Proposition 3.8 above proves bounds of the order O(n~(2+®)/4) for the true positive rate under
bounds in O(n~1/2) for the false positive rate. It is slower than the usual fast learning rate proven
in Section 2.4, due to the bilateral control of the two types of errors.

3.2.4 TreeRank

TREERANK is a recursive algorithm that gives a solution of the scoring problem based on the
adaptive approximation of the ROC curve of the optimal score function. Like other decision
tree-based algorithms, it recursively partitions the input space into cells. However, the output
of TREERANK is a piecewise constant scoring function, and the inverse image of its values
corresponds to leaves of the associated tree. In its simplest form, the algorithm generates a full
binary tree of depth D, which gives a partition of the space X in 2P cells Cp x, indexed by
ke {0,...,2P —1}. TREERANK is a greedy algorithm, since the splitting procedure is designed
to optimize the AUC at each step.

The algorithm is described in Clémengon and Vayatis (2009) and Clémengon et al. (2011). We
refer the reader to Clémencon et al. (2011) (Section 4) for approaches to prune the full ranking
tree, and to Clémencon et al. (2013) for a description of an ensemble method for aggregating
TREERANK-based score functions. The aggregate is named Ranking Forest, as a reference of the
notion of Random Forest introduced in Breiman (2001). The aggregation of the random trees is
based on the idea of aggregating the order induced by each of the trees, see Section 3.3 below for
a short introduction to ranking aggregation, but in practice often consists of simply averaging
the scores. In this section, we present theoretical results for the TREERANK procedure that can
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be found in Clémengon and Vayatis (2009), as the thesis extends those results to a variant of
TREERANK adapted to the problem of similarity learning.

In the case of a full binary tree T of depth D, the score function writes as:

2 I[{xeC'D k}

and the score s7 induces a total order on the cells {C D,k}iial- At the beginning of the formation
of the ranking tree, a cell Cp o contains all of the input space, hence all instances of X have the
same score. To form a tree of depth D = 1, Cy is split in two cells C; o and C; ;. In general,
we introduce the notation corresponding to the cell Cy , of each node, such that:

Vd,ke{l,...,D} x {0,...,2¢ =1} with k =2m, meN,  Cyr U Cars1 = Ca_1.m-

The parametrization of the nodes by the tuple (d, k) is best understood by considering the
problem of visiting all the nodes of a tree, see Sedgewick and Wayne (2011) (Chapter 29). Going
through the nodes (d, k) by increasing d and then by increasing k implements a depth first search
(DFS). On the other hand, going through the nodes (d, k) by increasing k, then by increasing d
implements a breadth first search (BFS). For example, for a tree of depth 2, it gives:

(DFS): (0,0) < (1,0) < (2,0) < (2,1) < (1,1) < ...
(BFS): (0,0) < (1,0) < (1,1) < (2,0) < (2,1) < ...

where (d, k) < (d', k") means that the node (d, k) is visited first.

As shown by the definition of the ROC curve, see Eq. (3.1), the ROC curve of a piecewise
constant score function is a set of points on the ROC plane. A common response in the analysis
of piecewise constant scores, is to consider its ROC to be the broken line that connects those
points, which corresponds to considering an element to be above another with probability 1/2
when their scores are equal, as precised below Eq. (3.1).

We introduce the alternative notations for the proportion of positives (resp. proportion of
negatives) contained by a set C' as 5(C') (resp. a(C)), i.e. for any C < X, B(C) := G(C) and
a(C) := H(C). Then, Clémencon and Vayatis (2009) (Remark 13) provides an expression for
the AUC of the piecewise constant score function s, as:

AUC(s,) = 2 a(Cpr)+a(Cpr_1)) B(Rpk-1), (3.12)

N)M—l

where Ry j = U)_,Cay, for all d = 0, j € {0,...,2¢ —1}.

The ROC of the output sp of TREERANK is thus a piecewise linear function, whose ROC
(ROC(sp,-)) is designed to approach that of a piecewise linear approximation of the optimal
ROC curve ROC*. Clémengon and Vayatis (2009) introduce a score function s%,, whose ROC
(ROC(s%),-)) is the piecewise linear approximation of ROC*. Hence, deriving theoretical guaran-
tees for TREERANK consists in two steps. First, under regularity assumptions on the optimal
ROC curve, we quantify how the piecewise linear interpolation o — ROC(s%,, &) approximates
the optimal ROC curve ROC*. Second, we show that the ROC of sp can recover a good
approximation of the interpolation o — ROC(s%, @) learned from data, under an assumption
on the complexity of the proposed family C used to split the cells. The algorithm for splitting
the cells is referred to as LEAFRANK and its nature dictates the complexity of C. The distance
between the ROC curves of sp, s}, and s* € §* is measured with the following quantities, for
any two score functions si, so:

1
dy(s1,s2) = J |IROC(s1, @) — ROC(sg, o) de,
0

doo(s1,82) = sup |ROC(s1,a) — ROC(sz,a)|.
ae(0,1)

Proposition 3.3 implies that for any score function s, we have d; (s*, s) = AUC(s*) — AUC(s).
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In general, the approximation error of the piecewise linear interpolation of a function f that is
twice differentiable on [a, ] is controlled using its second derivative, as shown in Davis (1975)
(Theorem 3.1.1) and reminded in the proposition below. This property is a consequence of the
generalized Rolle’s theorem (Davis, 1975, Theorem 1.6.3).

Proposition 3.9. Assume that f : R — R is twice differentiable on [a,b]. Formally, for any x
such that a < x < b, we have:

max |f” (u)].

a<u<b

) (760 + L0 o) < O

By the definition of the optimal ROC curve, points of ROC* correspond to error rates of
super-level sets of the posterior probability 7. Therefore, the candidate splitting class for the
interpolation procedure writes as a super level-set on the value n(z):

C*={{xeX :n(x)>t}:te0,1]},

as expected from Proposition 3.3. The interpolation procedure seeks to find a set Cy € C* that
satisfies C; = {zr € X : n(z) > t}, with ¢ € [0,1], such that adding the point (a(C}), 8(Ct))
between the two points (o, 87 ;) and (@ ;1,87 1) of ROC* maximizes the AUC increment
A} 1 (C)/2, with:

Aék,k(ct) = (aZ‘,kH - O‘;,k) B(Cy) - (ﬁ;k,kJrl - 5;0 ~a(Cy),
= (a1 — @) - GF(t) = (B jor — Bix) - H* (D). (3.13)

The quantity A;k(Ct) is the AUC increment of the split, since the magnitude of the cross-product
between the vectors (a(Ct), B(Ct),0) and (af ; — af o, 851 — B50,0) is equal to the area of the
parallelogram that the vectors span. Maximizing A%, (C}) in t yields the following equality, if
both H* and G* are differentiable and the derivative of H* is nonzero:

G*¥ (1) Bk — Bink

T/ - ) (314)
H¥(t)  aj, —agy

Eq. (3.14) is an equality between the derivative of ROC* and the slope between the points
(a:ik;v ﬁ;k) and (a:;,k_;,_la 6;7k+1) of ROC*

Both Eq. (3.14) and the approximation result presented in Proposition 3.9 justify the derivation
of an expression for the first and second derivative of the ROC curve, provided in Proposition 3.11.
Proposition 3.11 requires the following technical assumptions.

Assumption 3.10. (Clémengon and Vayatis, 2009, Assumptions A1 and A2)
The three following assumptions hold true:

1. The distributions G and H are equivalent, i.e. each of them is absolutely continuous w.r.t.
the other (Shorack, 2000, Definition 1.3, Chapter 4).

2. The likelihood ratio dG/dH (X) is bounded. This property is equivalent from Bayes’ theorem
ton(X) <1 as.

3. The distribution of n(X) is absolutely continuous w.r.t. the Lebesgue measure.

Proposition 3.11 (Derivatives of ROC*). (Clémencon and Vayatis, 2009, Proposition 6)
Assume that Assumption 3.10 is satisfied, and that there exists ¢ > 0 such that H*'(u) > ¢ for
any u € supp(H*/), where supp(H*/) is the support of H* . Then, the optimal ROC curve ROC*
is twice differentiable on [0, 1] with bounded derivatives, and we have: Yo € [0,1],

i * _ I—p ) Q*(a)
daROC () b T-0%a)
d? * _ 1-p Q*I(O‘)
a0 = T T e

where Q¥ (o) = —1/H* (Q*(a)). Note that Q* (o) < Q*(0) = ||n(X)
boundedness of the derivatives.

|, <1, which implies the
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The procedure to define s¥ is summarized in Fig. 3.3. The expression of A:ik+1,2k in Fig. 3.3
is justified by combining Eq. (3.13) with the following expression of the likelihood ratio of
nX)|Y=—-land n(X)|Y = +1:

dG* 1—-p u
* (u) = T
dH P 1—u

found in the proof of Proposition 3.11, and maximizing A;’ «(Cy) in t. The definition of s} gives,
combined with Proposition 3.9 and Lemma 18 of Clémengon and Vayatis (2009), a control for
both of the distances d; and dy, between the ROC of the piecewise constant s} and the ROC of
an optimal score function, as shown in Proposition 3.12 below.
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Figure 3.2: Iterations of the LEAFRANK algorithm for depths 1, 2, 3 and 10. The top figures
represent the split of the space, where greener areas correspond to higher scores. The bottom
figures correspond to the ROC' curves associated with the score functions.

Proposition 3.12. (Clémengon and Vayatis, 2009, Proposition 10)
Assume that the same assumptions as Proposition 3.11 hold. Then, the sequence of piecewise
constant scoring functions (s%)a=1, satisfies: for any d > 1,

Now, we present guarantees for the distance between the ROC’s of the output of the TREERANK
algorithm (ROC(sp,-)) and the piecewise linear approximation of ROC* (ROC(s%,)). As
TREERANK’s scoring rule is learned from empirical data, we introduce the empirical proportion
of negatives (resp. positives) as @ (resp. () on the set C as:

a(C) = ni SUXeC,Yi=—1}  and  B(C) = i SIX; € C,Y; = +1}.

T i=1

TREERANK relies on a proposed family of sets C, that has finite VC-dimension. The TREERANK
procedure is described in Fig. 3.4, and follows the same ideas as Fig. 3.3 but without knowledge
of the data distributions and optimal ROC curve ROC*. See Fig. 3.2 for a visual representation
of the construction of a ranking tree. The following lemma defines a recurrence hypothesis that
implies Theorem 3.15. Combined with Proposition 3.12, Theorem 3.15 implies guarantees for the
TREERANK algorithm.

Example 3.13. Consider that the random variable X is uniformly distributed on X = [0,1]?
and that n(x) := l{xy + x2 > 1}. Then, the data is separable and the optimal ROC (ROC*) is
the unit step. In Fig. 3.2, we show the ROC curve obtained by TREERANK with coordinate splits
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INTERPOLATION OF ROC¥*

(Clémengon and Vayatis, 2009, Section III-D)

Initialization (d = 0 and d = 1). For the extremal points, we set
Vd € N, aio = Bj,o =a() =0 and a:gd = ﬁ:ikzd = a(Co,0) = 1.

From d to d + 1, for d > 1.
We are given the collection of points {(aj,,B85 )} k=0, . 2¢_1- On each interval
(@ » @ 11), we find a point on ROC* that maximizes the incremental AUC quantity
A;’l‘, &> given by:

a§+1,2k+1 = FI*(A§+1,21€+1)» and 5§+1,2k+1 = é*(A2lk+1,2k+l)7
where:

P(ﬂ:,k-ﬂ - 5;})

(1-p) (as,kJrl - a:ik,k) +p (ﬂ;kJrl - szk,k)

Moreover, the previous cut-off point is renamed:

*
Ad+1,2lc+1 =

* * * * * *
Qgi12k = gk and /Bd+1,2k = Bd,k and also Ad+1,2k = Ad,k-

Output.
For each level d, the resulting partition is given by the class of sets:

CZlk,k ={reX: A:‘;,kﬂ <n(z) < A;",kL

for all k = 0,...,2% — 1 with the convention that A%y =0and Ayoa = 1 for all
d=0.

Figure 3.3: Description of the ROC* interpolation procedure.
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THE TREERANK ALGORITHM

Input. Maximal depth D > 1 of the scoring tree, class A of measurable subsets of X,

training dataset D,, = {(X1,Y1), ..., (Xn,Yn)}
1. (INITIALIZATION.) Set Co,0 = X, g0 = Ba,0 = 0 and ay 90 = By 0a = 1 for all
d=0.
2. (ITERATIONS.) For d =0, ..., D—1land k=0, ..., 2¢ —1:

(a) (OPTIMIZATION STEP.) Set the entropic measure:

Aas1(C) = (aaps1 — @ k)@(C) — (Bak+1 — Bar)B(C).

Find the best subset Cq+1,21 of the cell Cq, in the AUC sense:

Cdat1,2e = argmax ]id,k;.{.l(c). (3.15)
CeA, CcCq

Then, set Cat1,2k+1 = Ca,k\Ca+1,2k-
(b) (UPDATE.) Set
Qd+1,2k+1 = Qdk + a(cd+1,2k)7 Qd+1,2k+2 = Qd k+1,
Bavi,2k41 = Pak + B(Cav1,2k), Patri2e+2 = Bak+1 -
3. (OutpuT.) After D iterations, get the piecewise constant score function:

2D 1

sp(z) = Y. (27 — k) I{(z) € Cpx}. (3.16)

k=0

Figure 3.4: Description of the TREERANK procedure.

as LEAFRANK for differents values of the depth D. As TREERANK is a greedy algorithm, it can
not recover from an initial bad split in that case. Our illustrations shows the necessity for the
LEAFRANK algorithm is adapted to type of data considered.

Lemma 3.14. (Clémencon and Vayatis, 2009, Lemma 19)
Assume that the assumptions of Proposition 3.12 hold true and that the class C of subset
candidates contains all level sets { R }4e0,1] and is of VC-dimension V' and is intersection stable,
i.e., YO,C" € C?: C nC" € C. Then, there exists positive constants ki, kg, c1 and co such that:
for all 6 > 0, we have w.p. = 1— 6, that Vd € N* Vn e N*,

|AUC(sq) — AUC(34)| < 5§~ B(d,n,0),
and Vk € {0,...,2471 —1}:
|a(Cj ox) — (Cazn)| + |B(C ox) — B(Cazk)| < k§B(d + 1,7, 6),
where ¥(d,n,0) € N x Nx]0, 1:
v> . ( 10g(1/5)>;d

n n

B(d,n,8) = <

Lemma 3.14 implies the following theorem.

Theorem 3.15. (Clémencon and Vayatis, 2009, Theorem 15)
Assume that the assumptions of Lemma 3.14 hold. For all 6 > 0, there exists a constant ¢y and
universal constants c1,co such that w.p. =1 — 0, we have for all D > 1, ne N,

2 5 2 5
o< ((8)"+ (230)"),

1

. 2V T 2loe(1/8)\ TDFD
e (27 (2509 )
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Combining Theorem 3.15 and Proposition 3.12 gives guarantees on the ability of TREERANK to
recover the optimal ROC curve.

Corollary 3.16. (Clémencon and Vayatis, 2009, Corollary 16)
Assume that the assumptions of Lemma 3.14 hold. Choose D = D,,, so that D,, ~ +/log(n) as
n — 0. Then, for all § > 0, there exists a constant k such that, w.p. =1 —9: for allneN,

d;(5p,,s*) < exp(—r+/log(n)), i€ {l,00}.

3.3 Ranking aggregation

3.3.1 Introduction

As pointed out in Korba (2018) (Part 1), ranking data is less considered in the machine learning
literature than other types of data because the space of rankings is not a vector space. Hence,
many approaches in machine learning cannot directly apply to ranking data. Introduce the space
of all permutations of {1,..., K} as 6. The basic notion of mean or median of a sample of n
elements D,, = {0;}7; € & in the space of permutations does not have a clear definition, but it
does on vector spaces. The mean or the median of a sample in a vector space gives a sensible
summary of that sample, and ranking aggregation can be defined as the problem of finding a
sensible summary in S for the sample D,,.

Approaches to ranking aggregation can be separated in two groups: those that introduce a
distance on the space of rankings and seek a ranking o* that minimizes an expected distance to
elements of the sample D,,, and those that model explicitly the generation of the ¢;’s and derive
a notion of true ranking from the estimated parameters of the model.

The natural average X of a sample in a inner product space is the minimizer of the average
distance between the points of the sample and X, which justifies the distance-based approach.
Precisely, introduce a random sample Q,, = {X;}{"_; in the space & with a scalar product {-,-)

and an associated norm ||-||. Then, the average X of the random sample Q,, is the solution of
the following problem:

inE ith B(z):= Y || X; — .
mig ) with B() = N1 -
Indeed, simple calculus implies that E(z) — E(X) = n||X — ch2 >0 with X = (1/n) X1, X;.
The most typical example of a distance-based approach to ranking aggregation is the Kemeny
ranking aggregation (Kemeny, 1959). Formally, it writes on the sample D,,, as:

i d'r y Vi) 1
i 2y el 17

where d, is the Kendall T distance between two permutations, defined for any two 0,0’ € &g as

the number of pairwise disagreements over {1,..., K}. Formally:
dr(0,0") := Y (o (k) — o(1))(o" (k) — o’ (1)) < O},
k<l
=Y Hooo (k) > 000 ()}
k<l

Since d.(c,c’) depends only on the permutation o o a/_l, authors often consider a function
d; : 6 — R defined as the distance between ¢ and the identity permutation, with:

d. (o) = 2 Ko(k) > o(l)}.

k<l

A minimizer o* of Eq. (3.17) is called a Kemeny consensus. The Kemeny consensus for an
infinite sample, i.e. the solution of minyes, E[d, (0, X)], is referred to as Kemeny median in
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Korba (2018) (Chapter 1). While the Kemeny ranking aggregation procedure satisfies good
properties, computing the Kemeny consensus is a NP-hard problem (Cormen et al., 2009, Section
34). We refer to Korba (2018) (Chapter 2 and 3) for an overview of methods that give a good
approximation of the Kemeny consensus o*. Now, we focus on the notion of aggregation derived
from probabilistic models for ranking data, as those are more related to the thesis.

3.3.2 Probabilistic Rankings Models

Probabilistic models for ranking data model the distribution of a random permutation ¥ € G
by real-valued parameters. In this context, we consider the observations to aggregate D,, =
{o:}, € Gk as i.i.d. realizations of the random variable ¥. The most simple distribution
considers the r.v. ¥ to be a slightly modified permutation of a reference permutation o*, with
the strength of the modifications proportional to a dispersion parameter A. It is the Mallows
model presented below.

Definition 3.17 (The Mallows model). (Korba, 2018, Section 2.2.1)
The Mallows model is parameterized by a reference ranking o* and a dispersion parameter A € R .
Let 0 € Sk, then:

1
P{¥ =0}= — &P (=X -d(0,0%)),
where Z =3, s, exp (=X - d-(0,0%)).

Now, we provide a simple technique to sample from the Mallows model, referred to in Mesaoudi-
Paul et al. (2018) (Section 2.1). Notice that:

d.(o,0%) = Z {o o o* (k) > o 0o* (1)},

1<k<I<K

which implies that the Kendall 7 distance d, (o, 0*) can be seen as the number of wrongly ranked-
elements when resorting the reference ranking o* with o. Precisely, for [ € {2, K'}, introduce the
position of the I-th element in the reordering of {o*~1(1),...,0%* (I — 1)} by o as the following
value:

Vilo |0%):= ) H{ooo* (k) > ooa* (1)},

1<k<l

The function j — Vj(o | 6*) is a well-known notion in combinatorics defined as the Lehmer code
of the permutation ¢ o 0*~1. Then, the distribution of ¥ writes as:

K
P(S = o} = %nexp (=AVi(o | 0*)). (3.18)
=2

Eq. (3.18) implies that generating from the Mallows model can be done by constructing a random
reordering of the reference ranking o*. Precisely, consider an empty list and add to this list the
element o*~1(1). With probability exp(—2\), insert the second element o*~1(2) before that first
element, i.e. in position V(o | 0*), with positions starting at 0. Then, insert sequentially all of
the remaining elements o*~1(1) at position V(o | o*) € {0,...,1—1} for all [ € {3,..., K}, where
the Lehmer code is generated with, for any r € {0,...,1 — 1}:

P{Vi(oc |o*) =7 |Viy...,Vi} oce ",

and oc denotes proportionality. This approach for generating from a Mallows model is called the
Repeated Insertion Model (RIM) and was introduced by Doignon et al. (2004). We refer to that
last publication for details.

Another popular model is the Thurstone model, which simply generates K independent random
variables in R with different distributions, and outputs the natural order ¥ on R of those K
variables. Hence, sampling from the Thurstone model is straightforward.
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Definition 3.18 (The Thurstone model). (Korba, 2018, Section 2.2.1)

Given the independent random variables X1, Xo, ..., Xk with different real-valued distributions
Xp ~ Py for ke {l,..., K}, the probability to observe a ranking o in the Thurstone model is
defined as:

]P{E = 0’} = ]P){Xa.—l(l) < Xa—l(g) << Xo.—l(K)}.

Finally, the Plackett-Luce model is a generalization to full rankings of the pairwise comparison
model of Bradley-Terry. That last model assumes that 3 follows the property below, for a
preference vector (wi,...,wk):

wy,

PS(R) > ()} = =

Definition 3.19 is thus very often referred to as the Bradley-Terry-Luce-Plackett (BTLP) model.
It was introduced in Bradley and Terry (1952), Luce (1959) and Plackett (1975) and is presented
below.

Definition 3.19 (The Plackett-Luce model). (Korba, 2018, Section 2.2.1)

Given a preference vector w = (wy, ..., wk), the Plackett-Luce model states that:
K—1
We-1
P(S=0} =[] o (3.19)

Ve .
k=1 Zl:k We—1(1)

As expected from the expression of Eq. (3.19), a natural way to sample from the Plackett-Luce
model is to sample sequentially the X~1(k) for each k € {1,..., K}, i.e. the elements at each

rank k for the permutation 3. First, note that P{X71(1) = I} = wl/(ZjK:l wj), which means
that X~1(1) follows a multinomial distribution of size 1 with support S; := {1,..., K} and
parameters {wl/(zsz1 w;)}HE . Let ke {2,..., K} and denote by Sy, the remaining elements, i.e.
Sy = S1\{Z71(1),..., X7 (k — 1)}, then, for any [ € S:

wq

PSR = LT (1 B - ) =

The limitations of the parametric models presented have led authors to consider non-parametric
models for rankings, which we do not detail here. We refer to Korba (2018) (Section 2.2.2) for
more details. Under the assumption below on a probabilistic model on rankings, the Kemeny
consensus writes as a function of the parameters of the model.

Assumption 3.20 (Strict Stochastic Transitivity (SST)). (Korba, 2018, Definition 1.2)
For any (k,1) € {1,...,K}?, introduce the pairwise probability as py; = P{X(k) < X(1)}.

The Strong Stochastic Transitivity (SST) assumption states that: for any k,l,me {1,..., K},

ey > 1/2 and DPim > 1/2 = Pleom > 1/2.

Under Assumption 3.20, the Kemeny median is equal to:

o*(k) =1+ ) Hprs <1/2} forany ke {l,...,K},
l#k

see Korba (2018) (Proposition 1.3). Assume that the SST assumption holds true. For a model, we
can explicit the pairwise probabilities py;’s involved in the expression of the Kemeny median as
functions of its parameters. Therefore, we can derive a sensible solution of the ranking aggregation
problem directly from the estimation of the parameters.

3.4 Connections to Present Work

The theory of bipartite ranking presented in this chapter is extended in Part II to our similarity
ranking problem (Chapter 5). That theory also helps to grasp the origin of our practical
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propositions for similarity ranking (Chapter 7). In Part III, Chapter 10 considers bipartite ranking
under fairness constraints. Finally, Chapter 8 relies on probabilistic models for interpreting
classification data as partial information about rankings on labels.

In Part II, Chapter 5 frames similarity learning as scoring pairs of features in the product space
X x X from the most similar to the least similar, and names this problem similarity ranking. This
point of view is natural, as many applications evaluate the performance of similarity functions
with metrics based on induced rankings, such as the ROC curve. In this context, Chapter 5
derives guarantees for the pointwise ROC optimization problem and the TREERANK algorithm in
the case of similarity ranking. Precisely, it extends the results of Proposition 3.5, Proposition 3.8
and Lemma 3.14, which involves results on U-statistics (Chapter 4).

In Part III, Chapter 10 discusses learning fair scoring functions, with constraints derived from
ROC-based criteria. As such, it leverages the discussion on bipartite ranking of this chapter,
combined with a decomposition of the ROC (Hsieh and Turnbull, 1996, Theorem 2.1) not
presented in this chapter. Finally, Chapter 8 considers the problem of providing a list of the
possible labels for an instance, ordered by the likelihood of the label. For that matter, it
models the relationship between random labels and an ordering of the labels. Hence, Chapter 8
leverages probabilistic models for rankings (Section 3.3.2), and combines their properties with
fast generalization bounds in binary classification (Chapter 2)



Chapter 4

U-statistics

Summary: This chapter is a short introduction to U-statistics, which in
their simplest form are averages of the evaluation of a real-valued function on
all n(n—1)/2 pairs that can be formed with a sample of size n. It provides the
necessary tools for for our theoretical results on similarity ranking (Chapter 5)
and distributed U-statistics (Chapter 6). To a lesser extent, it is involved in
the analysis of pairwise functionals in our work on fair ranking (Chapter 10).
The complexity of dealing with U-statistics arises from the dependence of
the terms involved in the sum. To extend the results for empirical processes
to U-statistics, many statistical tools were introduced. In this chapter, we
first detail the derivation of finite-sample guarantees on the supremum of the
deviations of U-statistics, following a similar analysis as finite-sample bounds
for binary classification (Chapter 2). That analysis also implies analytical
expressions for the variance of U-statistics. The main drawback of standard
U-statistics is their computational complexity as the sample size n grows.
Authors have thus proposed to consider incomplete U-statistics, which average
a random sample of B pairs selected by sampling with replacement. We detail
in this chapter the guarantees of Clémencon et al. (2016) for incomplete
U-statistics, as well as their expression of the variance. Finally, we detail the
involvement throughout the thesis of the theory of U-statistics presented here.
We refer to Lee (1990) and de la Pena and Giné (1999) for a more detailed
presentation of U-statistics.

4.1 Introduction

Most of the statistical machine learning literature focuses on averages of i.i.d. random variables,
since usual risks can be estimated with that type of estimators, for example in binary classification
(Chapter 2) or in bipartite ranking (Chapter 3). For other problems, estimators of the risk can
not — or should not — be introduced as averages of i.i.d. variables. For example, in the case of
metric learning (Bellet et al. (2015a)), empirical evaluations of the risk rely on evaluations of the
distance between a pair of independent copies of a random variable. If a realization of the same
random variable is involved in two pairs, the terms averaged in an estimator of the risk are not
independent, an the whole analysis of Chapter 2 and Chapter 3 do not apply. Computing the
average of a carefully selected set of pairs may restore the independence between the elements of
the sum. However, the limitations over the possible number of selected independent pairs leads
to an inaccurate estimator.

Averages over all pairs of independent random variables are well-known in the literature and
can be considered as the simplest form of a broad family of statistics referred to as U-statistics.
U-statistics are minimum variance unbiased estimators (MVUE) of their expected value (Lee,
1990), and were first introduced by Hoeffding (1948). Hoeffding (1948) proposed decompositions
for U-statistics that imply generalizations of the usual finite-sample learning bounds of Chapter 2
to U-statistics, as well as analytical expressions of their variance.

73
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The main drawback of U-statistics is their computational cost as the number of samples n grows,
since the number of terms that they average is quadratic in n. A natural approach to dealing
with the computational cost of a full U-statistic are incomplete U-statistics, which average a
fixed number of pairs, selected at random in the set of all possible pairs. They were introduced
in Blom (1976) and we refer to Clémencon et al. (2016) for a detailed account of their statistical
accuracy. In this chapter, we focus on one-sample U-statistics of degree 2 — i.e. U-statistics
formed with only one i.i.d. sample and pairs of elements of that sample — and give a more
general presentation in Section 6.2.1 of Chapter 6. We refer to Lee (1990) and de la Pena and
Giné (1999) for a more details on U-statistics.

Section 4.2 introduces formally U-statistics, and gives a few statistical properties that motivate
their study. Section 4.3 presents the theoretical tools for the extension of the learning bounds
presented in Chapter 2 to the case of U-statistics. Additionally, those same tools imply expressions
of their variance. In Section 4.4, we provide similar results for incomplete U-statistics. Section 4.5
details the implications of the results of this chapter on the original work of the thesis.

4.2 Preliminaries

Introduce a random variable X ~ P in an Euclidean space X as well as an independent copy X’
of X. Consider the estimation of a value that depends of P, denoted by 6(P) € R, such that:

0(P) = E[h(X, X")], (4.1)

where h is a measurable function X x X — R, called a kernel. The value 8(P) is called a
population characteristic of P in Hoeffding (1948), and the function 6 is called a functional of P.
Examples of quantities that write as Eq. (4.1) include:

e the variance of a distribution: X = R and h(X, X’) = (X — X')?/2,
e the Gini mean difference (Hoeffding, 1948, page 297): X =R and h(X, X') = |X — X'|,
e Kendall’s 7: X = [0,1] x [0,1] and h((X1, X2), (X}, X3)) = I[{(X1 — X])(X2 — X}) > 0},

as well as the estimators of the AUC involved in Chapter 3 and all of the statistics considered in
the similarity ranking setting presented in Part II.

A simple example of U-statistic is the natural estimator of the population characteristic 6(P).
Formally, consider a sample D,, := {X;}!" ; composed of n i.i.d. copies of X. The U-statistic
U, (h) constitutes an unbiased estimator of U(h) := E[U,(h)] = 6(P), with:

Un(h) := ﬁ DT h(X:, X;). (4.2)

1<j

In the rest of the chapter, we assume without loss of generality that the kernel h is symmetric,
since we can define the symmetric kernel i’ as:

W (2,2 = %(h(x,x’) + (2!, 7)),

such that U, (k') is a U-statistic with symmetric kernel, and also an unbiased estimator of 6(P).
The estimator U, (h) is said to be symmetric, which means that computing it on a permutation
of the sample D,, yields the same value. This property is true irrelevant of the distribution P.
The following property shows the unicity of a symmetric unbiased estimator in a large class of
distributions P over & is unique.

Theorem 4.1. (Lee, 1990, Theorem 2, Section 1.1, Chapter 1).
Consider the class of distributions P of all distributions with finite support in X. Then, U, (h) is
the unique symmetric unbiased estimator of 0(P) for any P € P.

The main complexity when studying U, (h) is the dependence of the terms involved in the
summation in Eq. (4.2). For example, the summation involves the two dependent terms h(X7, X5)
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and h(X1, X3). Hence, all of the results for standard empirical means introduced in Chapter 2
do not extend to U-statistics. For that reason, other estimators of (P) could be considered,
such as the average V,,(h) of |n/2| independent terms:
1 2l
Vi (h) = —— N b (X, Xia /) - 4.3

Using V;,(h) instead of U, (h) requires less computational power as we average O(n) terms instead
of O(n?) for U,(h). Additionally, V,,(h) is covered by the analysis introduced in Chapter 2.
However, the estimator V,,(h) is less precise than U, (h) since it averages way less terms. In that
regard, the importance of U-statistics is formally justified by Theorem 4.2 below.

Theorem 4.2. (Lee, 1990, Theorem 8, Section 1.1, Chapter 1)
The statistic Uy, (h) is a minimum variance unbiased estimator (MVUE) of the parameter 0(P).

4.3 Properties of Simple U-Statistics

As presented in Eq. (4.3), estimators of 6(F) that are simple empirical averages exist, but have
higher variance than U-statistics. The first Hoeffding decomposition (Proposition 4.3 below)
shows that U-statistics can be written as the mean of n! dependent simple empirical averages. It
is proven simply by rearranging of the terms of the sum. Lemma 4.4 exploits that decomposition,
to provide a first approach for extending the results of Chapter 2 on standard averages to
U-statistics.

Proposition 4.3 (First Hoeffding decomposition).
(Hoeffding, 1963, Equation 5.5) or (Clémengon et al., 2016, Fquation 15)
The U-statistic Uy (h) writes as the mean of n! dependent standard averages. Those averages
correspond to evaluations of Vi, (h) (Eq. (4.3)) on a permuted sample D,,. Precisely, we have:

1 1 2l
Un(h) = — > 7l D0 7 (Xotiys Xotitinga))
' oe6, i=1

Lemma 4.4. (Clémencgon et al., 2008, Lemma A.1)
Let {hi}ier be a family of symmetric measurable functions indexed by t € T, with T some set.
Assume that v is a convex non-decreasing function. Then, we have:

[n/2]
2 1
E sup ——— ¥ he(X;, X <E Sup T—— he (X, Xyn/2)+i )
o sy S )| <2 o (smp g S

under the assumption that the suprema are measurable and the expected values exist.

The main implication of Lemma 4.4 is that the results of Section 2.3.1 hold for U-statistics, a
consequence of the Chernoff bound (Proposition 2.4-Chapter 2) that is presented below. The
drawback of that analysis is that it gives the same bounds for both U, (h) and the inaccurate
estimator V;,(h) (Eq. (4.3)). Corollary 4.5 below is an extension of Proposition 2.19 (in Chapter 2)
to U-statistics. Its proof is a simple combination of Lemma 4.4, Proposition 2.19 and the
inequalities (n — 1)/2 < |n/2| < n/2.

Corollary 4.5. (Clémencon et al., 2016, Proposition 2)

Let H be a collection of symmetric kernels, that are indicators of a VC-class of sets of VC-
dimension V. Then, for all § € (0,1) and n € N such that n = 2, we have: w.p. =1 —19,

\/log(l/é) N \/1610g(2) + 16V log(1 + n)

n—1 n—1

sup|Un(h) — U(h)| <
heH

A more refined version of this inequality can be proven using a chaining argument, see Proposi-
tion 2.19 (Chapter 2). It states that, for all 6 € (0,1) and n € N such that n > 2, we have: w.p.

=>1-0, wp=1-—24,
log(1 2
sup|Un(h) = U(R)] < 1/ 2812) | 50 |2V
heH n—1 n

where C > 0 is an universal constant.
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As in Chapter 2, tighter bounds are obtained by considering the variance of U-statistics. To
compute that variance, we use a linearization technique presented below, called the second
Hoeffding decomposition (Proposition 4.6). It writes the estimator U, (h) as the sum of two
decorrelated terms, and implies directly a simple expression for the variance of U, (h). Precisely,
it decomposes U, (h) as its Hajek projection — its projection on standard averages w.r.t. the
Ly norm — plus a remainder, that satisfies a “degenerate“ property presented in Definition 4.8
below. The second Hoeffding decomposition is proven simply by rearranging of the terms of the
sum.

Proposition 4.6 (Second Hoeffding decomposition).

(Hoeffding, 1948, Equation 5.18) or (Lee, 1990, Theorem 3, Section 1.3, Chapter 1)

The U-statistic Uy, (h) can be written as the sum between an empirical process and a degenerate
U -statistic. Formally:

Un(h) - U(h) = 2Tn(h) + Wn(h)a

where:

T, (h) := %Zho(Xi) and W, (h) := ﬁzm(xi,xj),

i<j
with:
ho(z) = E[h(x, X")] = U(h) and hi(z,2') := h(z,z") — U(h) — ho(z) — ho(z).
Corollary 4.7. Since: Vi, j, k,le{1,...,n}, withi # j,k #1 and (i,7) # (k,1),
=0,

Cov(hy(Xi, X;), ha(Xk, X7))

= 0, CO’[)(ho(XZ),ho(Xk))
and  Cov(ho(X;), h1(Xk, X)) =0,

we have that:

403 202
Var(Uy (h)) = TO M — T

The U-statistic W,,(h) in Proposition 4.6 is a special type of U-statistic called a degenerate
U -statistic. Tts variance is low compared to T),(h), as implied by Corollary 4.7.

Definition 4.8 (Degenerate U-statistic).

(Hoeffding, 1948, Equation 5.11) or (van der Vaart, 2000, Section 12.3)

Assume that for any x € X, we have E[h(z, X)] = 0. Or equivalently, that hg = 0. Then, U, (h)
18 said to be a degenerate U-statistic — or stationary of order 1 — and it satisfies:

Var(U,(h)) = O(n™2).

Clémengon et al. (2008) presented fast learning bounds for empirical risk minimization with
U-statistics. For that matter, they introduced a noise assumption (as in Section 2.4) to derive
bounds for the term T, (h). They deal with the term W, (h) with specific properties of degenerate
U-statistics.

For T,,(h), Clémencon et al. (2008) give a noise condition on the variance of T, (h) directly.
However, in Section 2.4.2 of Chapter 2, a condition on the distribution implies a condition
on some variance. By Jensen’s inequality, we have Var(ho(X)) < Var(h(X, X’)). It shows
that any term in the Hajek projection T, (h) has lower variance than any term of the quantity
Va(h) in Eq. (4.3) (van der Vaart, 2000, Chapter 11). As a result of the variance reduction
property of the Héjek projection, fast learning bounds hold under weaker assumptions on the
data distribution. This property explains the noise condition of Clémencgon et al. (2008). A
straightforward application of the analysis used to derive fast learning speeds in Chapter 2
achieves to bound T, (h).

For W, (h), we first present fast learning bounds for a finite family of functions, which follow
from an union bound of results on single functions (Proposition 4.9). Then, we provide a result
for more general classes of functions (Proposition 4.10).
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Proposition 4.9. Consequence of (de la Pena and Giné, 1999, Theorem 4.1.13)
Assume that h satisfies ||h||,, < My. Then, for any (n,0) € N* x (0,1): w.p >1—9,

B 4deMp, log(4/0)

n

[W(h)|
where ¢ > 0 is an universal constant.

Proof. We refer to de la Pena and Giné (1999) (Theorem 4.1.13) for the full proof of Proposition 4.9,
but detail the application of the result. With the kernel hq, it gives:

B{[W (h)] > £} < 4exp (‘452) ,

since |hi| < 4M},. Proposition 4.9 follows from inverting the bound. O

Proposition 4.10. (Arcones and Giné, 1994, Theorem 3.2)
Assume that the family of kernels H is of VC-dimension V, and that any h € H satisfies
|h]], < My Then, for any (n,d) € N x (0,1) such that n > 2: w.p >1—14,

8 My log(c/0)
A O

)

where c,c are constants that depend of V.

Proof. We refer to (Arcones and Giné, 1994, Theorem 3.2) for the full proof of Proposition 4.10,
but detail the application of the result. Arcones and Giné (1994) refers to degenerate U-statistics
as P-canonical U-statistics, see Equation 2.11 therein. On the other hand, the VC-dimension
implies an upper bound on the covering number of a family of functions, as shown in Gyorfi
(2002) (Theorem 1.17). Applying the result to the family of h’s derived from the elements h € H,
gives, since |||, < 4My:

n*:l /
P{—— - sup|W,(h)| =t} <ce Y,
{SM supl7, (1) } ce

where ¢ and ¢’ are positive constants that depend on V. Proposition 4.10 follows from inverting
the bound. ]

To derive fast learning bounds for U-statistics, it suffices to: 1) repeat the analysis for standard
averages (Chapter 2) on T,,(h), while taking into account the specificities regarding the noise
condition, 2) combine those with concentration bounds for degenerate U-statistics

4.4 Properties of Incomplete U-Statistics

The main drawback of the complete U-statistic U, (h) is its computational cost for large n, since
the number of terms to average is n(n — 1)/2 (Eq. (4.2)). Thus, a popular idea is to consider
the incomplete U-statistic Ug(h), which averages the value of h over B pairs (X;, X;) selected at
random in the set of all pairs (Section 4.3 of Lee (1990) or Clémencon et al. (2016)). Formally,
we have:

1
Us(h) = 5 D h(X:,X;),
(4,J)eDp

where Dp is a set of cardinality B built by sampling with replacement in the set of all possible
pairs A := {(4,7) : i < j} of size #A = n(n—1)/2. Another approach to reduce the computational
cost of U-statistics is to consider estimating U(h) with the full U-statistic U,,(h) on a smaller
sample of size m. Replacing U, (h) by U,, (k) in Corollary 4.5 gives a bound of the order O(m~/?).
The following result gives an expression of the variance of the incomplete U-statistic Ug(h),
which tends to that of U, (h) when B tends to infinity, as expected.
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Theorem 4.11. (Clémencon et al., 2016, Equation 21)
For any n > 1 and B € N*, the variance of the incomplete U-statistic Ug(h) can be decomposed
as:

Var(Ug(h)) = (1 - ;) Var(U,(h)) + éVar(h(Xl,Xg)).

Besides the expression of the variance, Clémengon et al. (2016) (Theorem 6) derived an upper-
bound on the deviation of the incomplete U-statistic Ug(h) from the complete one U, (h).

Theorem 4.12. (Clémengon et al., 2016, Theorem 6)
Let ‘H be a collection of kernels, that satisfies the assumptions of Corollary 4.5, then, for any
n>1and BeN* wp =>1-9,

Vlog(l + n(n —1)/2) + log(2/9)
}SLE?I_)[‘UB(}L) —Un(h)] < \/2 B :

The combination of Corollary 4.5 and Theorem 4.12 implies a simple learning bound for incomplete
U-statistics. A striking fact, underlined in Clémengon et al. (2016) (Section 3.1), is that it suffices
to select B = O(n) pairs to recover the standard learning bound in O(n~'2) presented in
Chapter 2. For the same number of evaluated pairs B = m(m — 1)/2 = O(n), computing the
complete U-statistic U,,(h) on a sample of m pairs, gives a significantly slower bound in O(n~1/4).
While the observation of Clémencon et al. (2016) gives significant guarantees for large n, in
practical cases (finite n) usual learning bounds are quite loose and do not give information about
the relative accuracy of an incomplete U-statistics with respect to a complete U-statistic.

4.5 Connections to Present Work

Theoretical results on U-statistics are involved in Chapter 5 and Chapter 6 of Part 11, as well
as in Chapter 10 of Part III. Precisely, Chapter 5 extends the proofs for bipartite ranking seen
in Chapter 3 to the case of similarity ranking, which involves pairwise learning. Chapter 6
introduces estimators of U-statistics in a distributed environment. Finally, Chapter 10 discusses
fairness for bipartite ranking, and relies on the empirical AUC as a performance measure.

In Part II, Chapter 5 leverages standard learning bounds for U-statistics (Corollary 4.5) to
derive uniform generalization bounds for similarity ranking, defined as the problem of learning a
similarity on the product space X x X with a pairwise bipartite ranking objective. The second
Hoeffding decomposition (Proposition 4.6), combined with bounds on degenerate U-statistics
(Proposition 4.9 or Proposition 4.10), implies faster but data-dependent guarantees. Additionally,
our convergence bound for incomplete U-statistics (Theorem 4.12) implies theoretical results
for scalable sampling-based methods for similarity ranking. Those results are not a direct
application of this chapter, since the pointwise ROC optimization problem presented in Chapter 5
is a constrained optimization. In Chapter 6, the implications on the variance of U-statistics
(Theorem 4.11) of the second Hoeffding decomposition (Proposition 4.6) are essential to compute
the variance of our distributed estimators for U-statistics.

In Part ITI, Chapter 10 involves standard learning bounds for U-statistics (Corollary 4.5) to derive
generalization guarantees for maximizing the Area Under the ROC Curve (AUC), a pairwise
functional criterion for ranking.
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Chapter 5

Similarity Ranking Theory

Summary: The performance of biometric systems — and that of many
machine learning techniques — depends on the choice of an appropriate
similarity or distance measure on the input space. Similarity learning (or
metric learning) aims at building such a measure from training data so
that observations with the same (resp. different) label are as close (resp.
far) as possible. In this chapter, similarity learning is investigated from the
perspective of pairwise bipartite ranking, where the goal is to rank the elements
of a database by decreasing order of the probability that they share the same
label with some query data point, based on the similarity scores. We study
this novel perspective on similarity learning, that we call similarity ranking,
through a rigorous probabilistic framework. Our results are an extension of the
analysis of bipartite ranking provided in Chapter 3, but the pairwise nature
of similarity ranking involves results on U-statistics (Chapter 4). We provide
an extensive study of the generalization of pointwise ROC optimization for
similarity ranking, completed by an empirical illustration of the fast learning
rates that we prove. Then, we proceed to extend the theoretical guarantees of
the TREERANK algorithm to similarity ranking with the theory of U-statistics.

5.1 Introduction

Similarity (or distance) functions play a key role in many machine learning algorithms for
problems ranging from classification (e.g., k-nearest neighbors) and clustering (e.g., k-means) to
dimensionality reduction (van der Maaten and Hinton, 2008) and ranking (Chechik et al., 2010).
They are also essential to biometric identification algorithms. The success of such methods is
heavily dependent on the relevance of the similarity function to the task and dataset of interest.
This has motivated the research in similarity and distance metric learning (Bellet et al., 2015a),
a line of work which consists in automatically learning a similarity function from data. This
training data often comes in the form of pairwise similarity judgments derived from labels, such
as positive (resp. negative) pairs composed of two instances with same (resp. different) label.
Most existing algorithms can then be framed as unconstrained optimization problems where
the objective is to minimize some average loss function over the set of similarity judgments, see
for instance (Goldberger et al., 2004; Weinberger and Saul, 2009; Bellet et al., 2015a). Some
generalization bounds for this class of methods have been derived, accounting for the specific
dependence structure found in the training similarity judgments (Jin et al., 2009; Bellet and
Habrard, 2015; Cao et al., 2016; Mason et al., 2017; Verma and Branson, 2015). We refer to
Kulis (2012) and Bellet et al. (2015a) for detailed surveys on similarity and metric learning.

In this chapter, we study similarity learning from the perspective of pairwise bipartite ranking,
where the goal is to rank the elements of a database by decreasing order of the probability that
they share the same label with some query data point. This problem is motivated by many
concrete applications: for instance, biometric identification aims to check the claimed identity of
an individual by matching their biometric information (e.g. a photo taken at an airport) with a
large reference database of authorized people (e.g. of passport photos) (Jain et al., 2011). Given

81



Chapter 5. Similarity Ranking Theory 82

a similarity function and a threshold, the database elements are ranked in decreasing order of
similarity score with the query, and the matching elements are those whose score is above the
threshold. In this context, performance criteria are related to the ROC curve associated with the
similarity function, i.e. the relation between the false positive rate and the true positive rate.
Previous approaches have empirically tried to optimize the Area under the ROC curve (AUC)
of the similarity function McFee and Lanckriet (2010); Huo et al. (2018), without establishing
any generalization guarantees. The AUC is a global summary of the ROC curve which penalizes
pairwise ranking errors regardless of the positions in the list. More local versions of the AUC
(e.g., focusing on the top of the list) are difficult to optimize in practice and lead to complex
nonconvex formulations (Clémengon and Vayatis, 2007; Huo et al., 2018).

In this chapter, we focus on a specific performance criterion, namely pointwise ROC optimization,
which aims at maximizing the true positive rate under a fixed false positive rate. This objective,
formulated as a constrained optimization problem, naturally expresses the operational constraints
present in many practical scenarios. For instance, in biometric applications such as the one
outlined above, the verification system is typically set to keep the proportion of people falsely
considered a match below a predefined acceptable threshold (see e.g., Jain et al., 2000, 2004).

Specifically, we derive statistical guarantees for the approach of solving the constrained opti-
mization problem corresponding to the empirical version of our theoretical objective, based on a
dataset of n labeled data points. As the empirical quantities involved are not i.i.d. averages but
rather in the form of U-statistics Lee (1990), our results rely on concentration bounds developed
for U-processes Clémencgon et al. (2008). We first derive a learning rate of order O(1/4/n) which
holds without any assumption on the data distribution. We then show that one can obtain faster
rates under a low-noise assumption on the data distribution, which has the form of a margin
criterion involving the conditional quantile.

The chapter is organized as follows. Section 5.2 introduces the proposed probabilistic framework
for similarity learning, draws connections to existing approaches and introduces the pointwise
ROC optimization problem. In Section 5.3, we derive universal and fast learning rates for the
minimizer of the empirical version of our problem, with Section 5.3.3 illustrating the different
generalization speeds on a simple toy example. Finally, Section 5.4 presents the extension of the
well-known TREERANK algorithm for learning score functions to the case of learning similarity
functions as well as an extension of its theoretical guarantees based on the theory of U-statistics.

5.2 Similarity Ranking

In this section, we formulate the supervised similarity learning problem from the perspective of
pairwise bipartite ranking, and highlight connections with some popular metric and similarity
learning algorithms of the literature.

5.2.1 Similarity Learning as Pairwise Ranking

We consider the (multi-class) classification setting. The random variable Y denotes the output
label with values in the discrete set {1, ..., K} with K > 1, and X is the input random
variable, taking its values in a feature space X < R? with d > 1 and modeling some information
hopefully useful to predict Y. We denote by F' the marginal distribution of X and by n(z) =

(m(z), ..., nk(z)) the posterior probability, where ni(z) = P{Y = k | X = z} for z € X
and k € {1, ..., K}. The distribution of the random pair (X,Y) is entirely characterized by
P = (F,n). The probability of occurrence of an observation with label k € {1, ..., K} is assumed

to be strictly positive and denoted by pr = P{Y = k}, and the conditional distribution of X
given Y = k is denoted by Fj. Equipped with these notations, we have F' = ZkK=1 PrFl.

Optimal similarity measures. The objective of similarity learning can be informally formu-
lated as follows: the goal is to learn, from a training sample D,, = {(X1,Y1), ..., (X,,Y,)} com-
posed of n = 1 independent copies of (X,Y’), a (measurable) similarity measure s : X x X — R
such that given two independent pairs (X,Y) and (X', Y”) drawn from P, the larger the similarity
s(X, X') between two observations, the more likely they are to share the same label.
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The set of all similarity measures is denoted by S. The class §* of optimal similarity rules
naturally corresponds to the set of strictly increasing transforms T of the pairwise posterior
probability n(z,2’) = P{Y =Y’ | (X, X’) = (x,2')}, where (X’,Y”") denotes an independent copy
of (X,Y):

{Ton|T:Im(n) — Ry borel, strictly increasing},

and where I'm(n) denotes the support of n(X, X’)’s distribution. With the notations previously
introduced, we have n(z,z’) = Zszl e (x)ne(x’) for all (z,2') € X2. A similarity rule s* € S*
defines the optimal preorder’ <* on the product space X x X: for any (w1, 72, x3,24) € X4, 11
and x5 are more similar to each other than 3 and x4 if and only if (i.f.f.) (a1, z2) = (a3, z4),
and one writes (x3,24) <* (21, z2) in this case. For any z € X, s* also defines a preorder <* on
the input space X', permitting to rank optimally all possible observations by increasing degree of
similarity to z: for all (z1,z2) € X2, ; is more similar to 2 than x5 (one writes zo <* 1) i.f.f.
(z,z2) <* (x,21), meaning that n(x,z2) < n(z,x1). We point out that, despite its simplicity,
this framework covers a wide variety of applications, such as the biometric identification problem
mentioned earlier in the introduction.

Similarity learning as pairwise bipartite ranking. In view of the objective formulated
above, similarity learning can be seen as a bipartite ranking problem on the product space X x X
where, given two independent realizations (X,Y) and (X’,Y”) of P, the input r.v. is the pair
(X, X’) and the binary label is Z = 2I{Y = Y’} — 1. See Chapter 3 for a statistical learning view
of bipartite ranking.

ROC analysis is the gold standard to evaluate the performance of a similarity measure s in this
context, 7.e. to measure how close the preorder induced by s is to <*. The ROC curve of s is

the PP-plot t € R, > (H,(t), G(t)), where, for all ¢t > 0,
Hy(t) =P{s(X,X")<t|Z=-1} and Gi(t) =P{s(X,X')<t|Z=+1},

where possible jumps are connected by line segments and F denotes the survival function of any
distribution F over R, i.e. F =1 — F. Hence, it can be viewed as the graph of a continuous
function a € (0,1) — ROC,(c), where ROC,(a) = G5 0 H7 ' () at any point « € (0,1) such that
H,o H;'(a) = a. The curve ROC; reflects the ability of s to discriminate between pairs with
same labels and pairs with different labels: the stochastically smaller than H, the distribution G
is, the higher the associated ROC curve. Note that it corresponds to the type I error vs power
plot of the statistical test I{s(X, X’) > t} when the null hypothesis stipulates that X and X’
have different marginal distribution (i.e. ¥ # Y”’). A similarity measure s; is said to be more
accurate than another similarity so when ROC;, (o) < ROCq, (a) for any « € (0,1).

Pointwise ROC optimization. In many applications, one is interested in finding a similarity
function which optimizes the ROC curve at a particular point a € (0,1). The superlevel sets of
similarity functions in §* define the solutions of pointwise ROC optimization problems in this
context. In the above framework, it indeed follows from Neyman Pearson’s lemma that the test
statistic of type I error less than « with maximum power is the indicator function of the set
R¥ = {(x,2') € X% : n(z,2") = Q*}, where Q¥ is the conditional quantile of the r.v. n(X, X")
given Z = —1 at level 1 — «. Restricting our attention to similarity functions bounded by 1, this
corresponds to the unique solution of the following problem:

ma.

Rt bject to R~ (s) < a, 5.1
s:X2—>[0,1)]{, borel (S) Stbject 1o (S) @ ( )

where RT(s) = E[s(X,X’) | Z = +1] is referred to as positive risk and R~ (s) = E[s(X, X") |
Z = —1] as the negative risk.
5.2.2 Connection to Metric Learning

We point out that the similarity learning framework described above can be equivalently described
in terms of learning a dissimilarity measure (or pseudo distance metric) D : X x X — R,. In

LA preorder on a set X is any reflexive and transitive binary relationship on X. A preorder is an order if, in
addition, it is antisymmetrical.
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this case, the pointwise ROC optimization problem (5.1) translates into:

5 Xgnn[o HE [D(X,X")| Z =+1] subject to E[D(X,X')|Z=-1]>1-a. (5.2)

A large variety of practical similarity and distance metric learning algorithms have been proposed
in the literature, all revolving around the same idea that a good similarity function should output
large scores for pairs of points in the same class, and small scores for pairs with different label.
They differ from one another by the class of metric/similarity functions considered, and by the
kind of objective function they optimize (see Bellet et al., 2015a, for a comprehensive review).
In any case, ROC curves are commonly used to evaluate metric learning algorithms when the
number of classes is large (see for instance Guillaumin et al. (2009); Kostinger et al. (2012); Shen
et al. (2012), which makes our framework very relevant in practice. Several popular algorithms
optimize an empirical version of Problems (5.1)-(5.2), often in their unconstrained version as in
Liu et al. (2010) and Xie and Xing (2014). We argue here in favor of the constrained version as
the parameter « has a direct correspondence with the point ROCg(«) of the ROC curve, unlike
the unconstrained case presented below.

A remarkable fact is that the superlevel set R* of the pairwise posterior probability n(x,z’) is
the measurable subset R of X2 that minimizes the cost-sensitive classification risk:

p1—QHP{(X,.X)¢R|Z=+1}+(1-p)QiP{(X,X")eR| Z = -1}, (5.3)

where p =P{Z = +1} = ZkK:lp%. Hence, the solution of Eq. (5.1) corresponds to the solution of
the minimization of Eq. (5.3). Notice however that the asymmetry factor, namely the quantile

*,is unknown in practice, just like the r.v. n(X, X’). For this reason, one typically considers
the problem of maximizing:

R*(s) — AR~ (s), (5.4)

for different values of the constant A > 0. The performance in terms of ROC curve can
only be analyzed a posteriori, and the value A thus needs to be tuned empirically by model
selection techniques. We focus here on the constrained version as the parameter « has a direct
correspondence with the point ROC,(«) of the ROC curve, unlike the unconstrained version.

Interestingly, our framework sheds light on MMC, the seminal metric learning algorithm of Xing
et al. (2002) originally designed for clustering with side information. MMC solves the empirical
version of (5.2) with « fixed to 0. This is because MMC optimizes over a class of distance
functions with unbounded values, hence modifying « does not change the solution (up to a scaling
factor). We note that by choosing a bounded family of distance functions, one can use the same
formulation to optimize the pointwise ROC curve.

5.3 Statistical Guarantees for Generalization

Pointwise ROC optimization problems have been investigated from a statistical learning per-
spective by Scott and Nowak (2005) and Clémengon and Vayatis (2010) in the context of binary
classification, which we presented in Chapter 3. The major difference with the present framework
lies in the pairwise nature of the quantities appearing in Problem (5.1) and, consequently, in the
complexity of its empirical version.

In this section, we present the extension of those results to the problem of learning similarities.
First, we deal with the derivation of uniform learning rates, i.e. learning rates that do not
depend on the data distribution, which relies on the extension of usual concentration inequalities
for U-statistics. Second, we present data-dependent fast rates, which requires less restrictive
assumptions on the data distribution than in bipartite ranking, which stems from the variance-
reducing property of the Hajek projection of a U-statistic.
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5.3.1 Uniform Rates for Pointwise ROC Optimization

Natural statistical estimates for the positive risk R* (s) and the negative risk R~ (s) (5.1) computed

on the training sample D,, = {(X1,Y7), ..., (Xn,Yy)} are given by:
~ 1
Ri(s) = — > s(X,X;) I{Y; = Y}, (5.5)
s 1<i<j<n
~ 1
Ry(s) = — > s(Xi,X;) I{Y; # Y}, (5.6)
n— I<i<j<sn

where ny =3, o, {Y; = Yj} = n(n—1)/2—n_. It is important to note that these quantities
are not 4.7.d. averages, since several pairs involve each i.i.d. sample. This breaks the analysis
presented in Chapter 3. We can however observe that:

2n7+-/\+s an _s:L.A—S
e Ry (s) d U, (s): =T R (s) (5.7)

Ul(s):=
are U-statistics of degree two — averages of a function of the pairs of an i.i.d. sample (see
Chapter 4) — with respective symmetric kernels:

h-‘r((x?y)’ (zlvy/)) = S(x’xl) : ]I{y = yl} and h—((x’y)v (xlvyl)) = 5($7I/) : H{y 7 y/}'

We will therefore be able to use existing representation tricks to derive concentration bounds for
U-processes (collections of U-statistics indexed by classes of kernel functions), under appropriate
complexity conditions, see e.g. Dudley (1999).

We thus investigate the generalization ability of solutions obtained by solving the empirical
version of Problem (5.1), where we also restrict the domain to a subset S of similarity functions
bounded by 1, and we assume S has controlled complexity (e.g. finite VC dimension). Finally,
we replace the target level a by a + ¢, where ¢ > 0 is some tolerance parameter that should be
of the same order as the maximal deviation sup,.g |R;, (s) — R~ (s)|. This leads to the following
empirical problem:

max RI(s) subject to R, (s)<a+o. (5.8)
SE

We are now ready to state our universal learning rate, describing the generalization capacity of
solutions of the constrained optimization program (5.8) under specific conditions for the class
So of similarity functions and a suitable choice of the tolerance parameter ®. This result can
be established by combining Corollary 4.5 in Chapter 4, an extension of usual concentrations
inequalities for empirical processes to U-statistics, with the derivations of Clémengon and Vayatis
(2010, Theorem 10 therein).

Theorem 5.1. Suppose that the proposed family S is a VC-major class of functions of finite
VC-dimension V, and that s(z,2') < 1 for all s € S and any (z,2') € X2. Assume also that there
exists a constant k € (0,1) such that k < Y, _, p} <1 — k. For all 5 € (0,1) and n > 1, set

$(0,n) = 2Cn1\/f For (14 kY 105(%/15),

where C' is a positive universal constant, and consider a solution S,, of the constrained minimization
problem (5.8) with ¢ = ¢(n,d/2). Then, for any 6 € (0,1), we have simultaneously, Yn >
1+ 4k 2log(3/6), w.p. =1 —4:

R*(5,) = ROC,x(a) — é(n,8/2) — {ROCS*(a) - R+(s)}, (5.9)

and

R™(5,) < a+ ¢(n,d/2). (5.10)
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Proof. As presented in Chapter 3, precisely Proposition 3.5, the bilateral control of each risk
R™, R~ implies guarantees for the constrained problem. Set p = Z£(=1 p3 and observe that we
have: ¥n > 1,

~ 2
sup| R} (s) — R*(s)‘ <p i
seS

nin—1) p‘ +p! igg!U,f(s) —E[U, (s)]]-

A generalization of Hoeffding’s inequality for U-statistics (Serfling, 1980, Section 5.6, Theorem
A), presented as Lemma 4.4 in Chapter 4, gives that, w.p. > 1 —9,

n—1"

2ng log(2/6)
n(n —1) —p‘ =

Combining this proposition with Corollary 4.5 in Chapter 4, gives that: Vn > 1, w.p. > 1 -4,

o~ + 2C |V 3 [log(3/d)
Ri(s)-R (S)’<p\/:+p ~8le/9),

su
D n—1

seS

Similarly, we obtain, with ¢ = 1 — p:

sup
seS

Ry(s) = R (s)| <

Sy | sl ) B o)

which gives with the exact same reasoning that: Vn > 1, w.p. =1 -4

~ _ 2C |V 3 [log(3/d)
Ro(s)—R (s)qu\/:+q 0el/9).

sup n—1

seS

which gives the right order of convergence. The proof is then finished by following the proof of
Theorem 10 in Clémengon and Vayatis (2010). O

The last term on the right hand side of (5.9) should be interpreted as the bias of the statistical
learning problem (5.8), which depends on the richness of class S. This term vanishes when
I{(z,2') € R%} belongs to S. Choosing a class yielding a similarity rule of highest true positive
rate with large probability can be tackled by means of classical model selection techniques, based
on resampling methods or complexity penalization.

Except for the minor condition stipulating that the probability of occurrence of “positive pairs”

Zszl pi stays bounded away from 0 and 1, the generalization bound stated in Theorem 5.1 holds
whatever the probability distribution of (X,Y’). Beyond such universal results, we investigate
situations where rates faster than O(1/4/n) can be achieved by solutions of (5.8), which are
presented in the section below.

5.3.2 Fast Rates for Pointwise ROC Optimization

Such fast rates results exist for binary classification under the so-called Mammen-Tsybakov
noise condition, as presented in Chapter 2. By means of a variant of the Bernstein inequality
for U-statistics, we can establish fast rate bounds under the following condition on the data
distribution.

Assumption 5.2. Let a € (0,1). There exist a € [0,1] and a constant ¢ > 0 such that, almost
surely,

Ex[[n(X, X') - Q% "] <e.

This noise condition is similar to that introduced by Mammen and Tsybakov (1995) for the
binary classification framework, except that the threshold 1/2 is replaced here by the conditional
quantile Q¥. It characterizes “nice” distributions for the problem of ROC optimization at point
a: it essentially ensures that the pairwise posterior probability is bounded away from Q¥ with
high probability.
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The condition expressed in Assumption 5.2 is weaker than that for standard bipartite ranking, i.e.
Assumption 3.6, which is possible thanks to the variance reducing property of Hajek projections.
For example, the noise condition is automatically fulfilled for any a € (0,1) when, for almost
every point z with respect to the measure induced by X, n(z, X’) has an absolutely continuous
distribution and bounded density. Intuitively, this assumption means that the problem of ranking
elements modeled by X according to their similarity with an element x € A is somewhat easy
(almost-surely). The implication is proven precily in the result below, with a proof that follows
the same arguments as Clémencon et al. (2008) (Corollary 8).

Proposition 5.3. Assume that there exist A < X,P(X € A) = 1, such that for all x € A, the
random variable n(x, X) has an absolutely continuous distribution on [0,1] and its density is
bounded by B. Then: for any e > 0,
“14e 2B
Ex/ [|77(X, X — QZ| 1+ ] < —  almost surely,
€
which implies that the fast rate of convergence of Theorem 5.5 applies for any a € (0,1).

Proof. Let x € A and h, be the density of n(x, X), with h, < B. Hence, for any a € (0, 1),
— 1 —
B [l X) = Q217 = [ 12 - Qul " hua)a
0

<B (JQz(QZ —2)7"dz + f (2 — Qi)_“dz> ;

0 Q%
*1—a 1— *\1—a
Cp(@ ey
l1—a 1—a
2B
S 1-a

O

The fast bounds result is based on the second Hoeffding decomposition (see Proposition 4.6 in
Chapter 4) of the U-statistic U} (see Eq. (5.7)), with an independent analysis of the sum of
i.i.d. terms and the degenerate U-statistic (see Definition 4.8 in Chapter 4) remainder. Denote
by s*(x,2") = I{(z,2’) € R%} the optimal similarity function. We assume for simplicity that it
belongs to S, but the result can be extended using the local analysis arguments presented in
Boucheron et al. (2005) (Section 5.3.5). For any s € S, the statistic:

An(s) = (U (s) ~E[U (9)]) — (U7 (%)~ E[U; (sM)]) (5.11)
is a U-statistic based on D,, with kernel @), given by:
Qs((z,y), (@',y) =T{y =y} (s(z,2') — s*(z,2")) —E[I{Y =Y} (s(X, X) — s*(X, X"))].

The second Hoeffding decomposition of U-statistics, presented in Chapter 4, leads to the following
decomposition of the U-statistic A,,(s):

An(s) = 2T (s) + Wal(s), (5.12)

where:

T.(s) =

S|

M go(Xi V) and  Wi(s) = ———
i=1

with:

as(z,y) = E[Qs (X, Y), (z,9))],
as ((z,y), (@",y") = Qs (=), (¢ 9)) — ¢s(z.y) — as(2",¥/).
While in the binary classification or bipartite ranking settings, the noise condition implied a

bound on the variance of an empirical process, our weak similarity ranking noise condition bounds
the variance of the Héjek projection of a U-statistic, as seen in the lemma below.
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Lemma 5.4. Suppose that the assumptions of Theorem 5.1 are satisfied and that Assumption 5.2
holds true with parameter a € [0,1]. Then, for any s € S, we have:

Var(gs(X,Y)) < e[(1 = Q3)p(R*(s*) = R*(s)) + (1 = p)QA(R™(s) = R™(s))]".  (5.13)

Proof. For any s € S and u € [0, 1], we introduce R, := {(z,2’) | s(x,2’) = u}. Then, s writes
as an integral of indicators of its level sets (van der Vaart and Wellner, 1996, Lemma 2.6.13):

s(X, X') = L 1 TI{(X, X") € Ry} du. (5.14)

Additionally, we have s*(X, X') = I{(X, X’) € R*}. The definition of g5 implies that:
Var (¢5(X,Y)) = Var [(EX,,Y, [1{Y = Y'}(s(X, X') — s*(X, X’))])Q] :
Therefore, the fact that Var(Z) < E[Z?] gives:
Var (¢,(X,Y)) < Ex.y [(Exly/ [I{Y = Y'}(s(X, X') — s*(X, X’))])Q] . (5.15)

Injecting Eq. (5.14) into Eq. (5.15) gives, from Fubini’s theorem:

1 2

Var (¢5(X,Y)) <Exy [(f Ex y: [I{Y = Y} (I{(X, X") € Rou} — I{(X,X") € R})] du) ] .
0

Jensen’s inequality applied to the integral over u, followed by Fubini’s theorem gives:

1

Var (g.(X,V) < |

Exy [(Exy [[Y =Y} (I{(X, X') € Ry}~ (X, X') € RED)])?| du.
0

We introduce v (we hide dependencies for readability reasons) as:
v:={Y =Y} (]I{(X, XNeRsu} —H{(X,X") e Rz})
={(X,X') € R uARL} (1 —2{(X,X") e Rz}) Yy =Y'},
then || < I{(X, X’) € Rs wARX} and the bound implies that:
1

Var (gs(X, Y)) < L Ey [(]EX/ [n{(X7X/)eRS,uAR§}])2] du. (5.16)

Cauchy-Schwartz’s inequality gives:
Ex/ [I{(X,X') € Rs uARE}]

n(X, x') - Qx| ™)

Nl

< (EX/[ % (Ex: [I{(X, X') € Ry u AR} - [n(X, X) — QE|"])*,

and Assumption 5.2 implies:
Ex: [I{(X, X) € Ry AR*}] < Ve x (Ex [I{(X, X') € Ra wAR*}|n(X, X') — QX[*])* .

Plugging that last result into Eq. (5.16) gives:

Var (¢5(X,Y)) < c- L Ex [Ex/ [I{(X,X') e Ry AR} - (X, X') — Q%|*]] du.

Since a € [0, 1], the function = — 2z is concave. Therefore, Jensen’s inequality applied for
integration with respect to X’, X and u sequentially, gives:

Var (¢,(X,Y)) <c (L E[{(X,X') € Ry AR} - [n(X, X') — Q%] du) ) (5.17)
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The right-hand-side of Eq. (5.17) is very similar to the expression of the excess risk in binary
classification presented in Eq. (2.1). We now relate it to the right-hand side of Eq. (5.13):

R*(s) = R (s%) = (1/p) - E[I{Y = Y'}(s(X, X") — s* (X, X"))],

= (1/p)- L E [n(X, X)(I{(X,X') € Rsu} — {(X, X') € R3})] du,

by Fubini’s theorem. Simple calculus gives:

1
R*(s) = R™(s*) = (1/p) L E[(1-2-I{(X,X') € R}) - n(X, X') - I{(X, X') € Ry AR} }] du,

The definition of @* implies that:

(1-2-I{(X, X") € RE}) (n(X, X") - Q) = —|n(X, X") — Q%]

and we have:
1
R¥(s) = R"(s*) =~ (1/p) - L E[[n(X, X") = Q%] - I{(X, X") € R wAR%}] du (5.18)

Q) j E[I{(X,X') € Ru} — (X, X') € R*}] du.
I{(X, X') € RewAR}- (1 —2-T{(X,X') € R*}) = I{(X, X') € Ry.u} — I{(X, X') € R*}.

Eq. (5.14) combined with Fubini’s theorem gives:

Jl E[I{(X, X") € Ry} — I{(X, X') € R*}] du = E[s(X, X')] — E[s*(X, X")], (5.19)

0
= p(Ry(s) = Ry (s%)) + (1 = p)(R_(s) — R_(s7)).

Combining Eq. (5.19), Eq. (5.18) and Eq. (5.17) and rearranging the terms completes the
proof. [

Using this property, we can derive fast learning rates.

Theorem 5.5. Suppose that the assumptions of Theorem 5.1 and Lemma 5.4 are satisfied, that
the class S is finite of size M, and that the optimal similarity rule s*(z,z') = I{(z,2') € R%}
belongs to S. Fixz § > 0. Then, there exists a constant C', depending on 6, k, Q%, a, ¢ and M
such that, for anyn > 1, w.p. =1—19,

ROC,«(a) — RT(8,) < C'n~ %+ and R™(5,) < a + 2¢(n,8/2).

Proof. The component W, (s) is a degenerate U-statistic (see Definition 4.8 in Chapter 4),
meaning that, for all (z,y),

E[gs ((z,y), (X,Y))] = 0 almost-surely.

The supremum of the family {W,,(s)}scs is controlled using the results in Chapter 4, precisely
Proposition 4.9 for finite families and Proposition 4.10 for more general classes of families.
Precisely, from de la Pena and Giné (1999) (Theorem 4.1.13 therein), we have since W, (s) is a
degenerate U-statistic, that: w.p. > 1 —4,

2C log(4M
sup| Wi (s)| < 2Clog(4M/5)

seS n

; (5.20)

where C' is an universal constant. This result shows that the second term in the decomposition
(5.12) is uniformly negligible with respect to the first term T, (s).

We consider Lemma 5.4 as an analogue of Lemma 11 of Clémengon and Vayatis (2010) (in the
preliminaries as Proposition 3.8 of Chapter 3) adapted to the case of similarity ranking. The fast
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rate bound stated in Theorem 5.5 then follows from the application of Talagrand’s inequality
(or Bernstein’s inequality when S is of finite cardinality), following the steps of Boucheron et al.
(2005) (subsection 5.2) or Clémengon and Vayatis (2010) (Theorem 12).

Since |Qs| < 2, Bernstein’s inequality combined with the union bound gives that, if S is of
cardinality M: w.p. = 1—6, for all se€ S,

7o < H080M8) | [PV, CE T o ML) o)
3n n
Combining Eq. (5.21) and Eq. (5.20) give that: w.p. =1 -4, forall se S
!
A(s) < C" log(5M /6) N \/QVar(qS(X, Y))log(5/5)) (5.22)
n n

where C' = 2C + 4/3.

The proof of Theorem 5.1 may be adapted to the finite class setting. Formally, introducing the
tolerance term:

log(2(M + 1)/0)
n—1

b

é(n,0) =271 (1 + /{_1)\/

where M is the cardinal of the proposition class S, we have simultaneously w.p > 1 — §, that:

R*(5,) = sup  RY(s) —¢(n,8/2) and R (5,) < a+ ¢(n,6/2), (5.23)
s€S: R~ (s)<a
sup| R} (s) — R*(s)| < ¢(n,0/2)". (5.24)
seS

Eq. (5.24) implies that s* satisfies the constraint of the ERM problem Eq. (5.8), hence R} (5,) —
R} (s*) = 0. Tt follows that :

Balfn) = s (RER) = REG) +p (R (%) = R (R.)).
>p(R*(s*) = R*(5,)) . (5.25)

Let 8, be a solution of Eq. (5.8) with ¢(n,d’/2)’, where ¢’ = 2(M + 1)§/(9M + 4). Introducing
Ks.m = (9M +4)/6, we combine Lemma 5.4, Eq. (5.22), Eq. (5.23) and Eq. (5.25), to obtain
that: w.p. > 1—96,

p(R*(s*) — R*(5))

< \/@ (01 = Q2)p(R* (s*) = REDIY2 + [QE( ~ p)o(n,3'/2)]2)

C’log K,
I 0g J,M.

- (5.26)

The highest order term on the right-hand side is in O(n=2¢(n, §/2)'%/?) which is O(n~(2+a)/4),
Eq. (5.26) is a fixed point equation in R (s*) — R (8,,). Finding an upper bound on the solution
of this fixed-point equation is done by invoking Lemma 7 of Cucker and Smale (2002), which
can be found as Lemma 2.27 in Chapter 2. Applying Lemma 2.27 to Eq. (5.26) concludes the
proof. O

Remark 5.6. We state here the result for the case where S is of finite cardinality M. Proving
this result for more general classes of functions S can be tackled by the localization argument
expressed in Boucheron et al. (2005) (pages 341-346 therein).

The proof is based on the same argument as that of Clémengon and Vayatis (2010) (Theorem
12), except that it involves a sharp control of the fluctuations of the U-statistic estimates of the
true positive rate excess ROC,x (o) — R (s) over the class S. The reduced variance property
of U-statistics plays a crucial role in the analysis, which essentially relies on the Hoeffding
decomposition (Hoeffding, 1948).
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5.3.3 Illustration of the Fast Rates

In this section, we provide numerical evidence of the fast rates of Theorem 5.5, which shows
that when Assumption 5.2 is verified, faster rates of generalization can be achieved. Showing
the existence of fast rates experimentally requires us to design a problem for which 7 satisfies
Assumption 5.2, which is not trivial due to the pairwise nature of the involved quantities. Such
practical evidence of fast rates is rarely found in the literature.

We consider a simple scenario where we focus on pointwise ROC optimization at level a € (0,1),
and we have X = [0,1], F = 1 (X follows an uniform distribution over [0,1]), K =2, p1 = py =
1/2 and for any z € [0,1/2], Fi(z 4+ 1/2) = 2 — Fy(x) — i.e. F} symmetric in the point (1/2,1) —
and:

Fi(x) 2C if xe[0,m],
) =
! 1—]1 22|59 i ze(m,1/2],

where C € (0,1/2) and m € (0, 1/2) satisfy:

1 VI=2a a(1-2m)*"
C==- + .
2 im dm

The complex expression of F} arises naturally when trying to design a suitable distribution. The
variable m was fixed, and C' is a solution of:

J (1 —n(z,2")) dedx’ = & (5.27)
1-n(z,z')> 2

since we fixed Q* = 1/2. Eq. (5.27) is a simple quadratic equation since the posterior probability
7 expresses in F} as:

3 (@) - 1) (AE) - 1). (5.25)

1
AN
n(x,z)—2 5

For C' to satisfy 0 < C' < 1/2, the variables (m, a, a) need to be restricted, as shown by Fig. 5.1.
Precisely, we see that experimental parameters (m, «, a) are valid if their corresponding point
is below the orange curve and above the dark blue curve. We see that excessively low values
of m restrict severely the possible values of («,a). The points should be under the red curve
if possible, since then Fj is increasing and assures that P (|n(X, X') — Q*| < t) is smooth on a
larger neighborhood of 0. Empirical distributions of |n(X, X’) — Q¥*| are displayed in Fig. 5.2 for
a = 0.26, m = 0.35. Figure 5.4 shows example distributions of the data.

Finally, we have:

P (|n(X. X") - Q% <t) =P (|(Fi(z) - DI () - 1)| < 2t) ,

=Jﬁ 22 — 1| - |22 — 1] < 2(4 )fa}dxdﬂ,

— o(4t) T [1 —log(2) — —~ 1og(4t)] . (5.29)
—a

When t is small enough, Eq. (5.29) gives P (|n(X, X’) — Q*| <t) of the order —t*(1 =) log(t).

Ignoring the log term, the result shows that our distribution satisfies the strong Mammen-Tsybakov

assumption (Assumption 3.6 of Chapter 3) and not our weak assumption (Assumption 5.2). Due

to the logarithm term in the noise condition, we expect the generalization speeds to be slightly
worse than O(n~(2+a)/4),

Now that the distribution of the data is set, we need to set the class of functions on which we
optimize Eq. (5.8). For all ¢ € [0, 1], we define the proposed family S as

{(z,2") > I{(z,2") e S} |0<t <1}

where S; = [0,t]? U [1 —t,1]? for any t € [0,1]. The sets S; are illustrated by Fig. 5.3.
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The risks RT(s), R™(s) of an element s of S that is an indicator of a set S; can be expressed in
closed form with the expression of 7. Indeed:

R*(s) :2[

n(z,2") dedx’ = \(Sy) + J (Fi(z) = 1) (Fi(z') — 1) dada’,
St

St

using Eq. (5.28), where ) is the usual area measure (i.e. Lebesgue measure over [0,1]?). The
right-hand side integral is easily developed since it is a sum of integrals over squares included in
[0,1] x [0,1].

We now describe the processus of choosing an optimal empirical function §,, for a set of observations
(X;,Y:). For all pairs X;, X;, we derive the quantity S; ; = min (max (1 — X;,1 — X;) ,max (X;, X;)).
Let o {1,...,n(n —1)/2} — {1,...,n}? be the function that orders the quantities S; ; increasingly,
ie. Sy1) < -+ < Sp(n(n—1)2)- Choosing an optimal empirical function 5, in S requires to solve

the pointwise ROC optimization problem for (S; ;, Z; ;). < and proposed functions:

Soiy + Soi ) -1
{W’H{“()z(m} ‘nggn(g)},

where S,y = 0 and S, ((n(n-1)/2)41) = 1 by convention. It can be solved in O (n2 log n) time
and we always neglect the tolerance parameter ®, i.e. we set ® = 0.

For all a € {1/10,...,9/10}, we generate 512 data points and compute the generalization error
ROCgx(a) — RT(S,,) for the n first data points, where n € {64,128,256,512}, and repeat
the operation 1000 times. We introduce @), as the 90-quantile of the 1000 realizations of
ROCg# (o) — R (8,,) for a given (n,a). The coefficients (C,, D,) of the regression Q,, =
D, + C, xlog(n) are estimated. Fig. 5.6 shows the learning speeds C, given the noise parameters
a’s. The estimation of the C,’s is illustrated by Fig. 5.5 and Fig. 5.6 summarizes the experiments
for the case & = 0.26, m = 0.35 and a € [0.1,0.9]. There is a clear downward trend when a
increases, illustrating the fast rates in practice.

5.3.4 Solving Pointwise ROC Optimization

Though the formulation of pointwise ROC optimization is natural, this constrained optimization
problem is very difficult to solve in practice, as discussed at length in Vogel et al. (2018). As
far as we know, the only papers that tackle the problem directly are Scott and Nowak (2006)
(Section 7.2), which is based on a fixed partition of the input space, or Scott and Nowak (2005)
(Section VI-B), which is based on recursive partitioning of the input space. In Chapter 7, we
propose a gradient-descent approach for learning to optimize for a specific point of the ROC
curve.

These difficulties suggest the extension to the similarity ranking framework of the TREERANK
approach for ROC optimization (Clémengon and Vayatis (2009) and Clémencon et al. (2011)),
recalled below. Indeed, in the standard (non pairwise) statistical learning setup for bipartite
ranking, whose probabilistic framework is the same as that of binary classification and stipulates
that training data are 4.i.d. labeled observations, this recursive technique builds (piecewise
constant) scoring functions s, whose accuracy can be guaranteed in terms of sup norm, i.e. for
which Dy (s, s*) can be controlled where:

D,(s,s*) = ||[ROC; — ROC*||,,

with s* € §* and p € [1, +0]. It is the essential purpose of the next section to prove that this
remains true when the training observations are of the form {((X;,X;), Z;;): 1<i<j<n},
where Z; ; = 2I{Y; = Y;} — 1 for 1 < i < j < n, and are thus far from being independent.
Regarding the implementation of TREERANK for pairs, attention should be paid to the fact that
the splitting rules for recursive partitioning of the space X x X’ must ensure that the decision
functions produced by the algorithm fulfill the symmetric property.

5.4 The TREERANK Algorithm for Learning Similarities

Because they offer a visual model summary in the form of an easily interpretable binary tree
graph, decision trees, see e.g. Breiman et al. (1984) or Quinlan (1986), remain very popular
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Figure 5.6: Generalization speed for different values of a.

among practitioners. In general, predictions are computed through a hierarchical combination
of elementary rules comparing the value taken by a (quantitative) component of the input
information (the split variable) to a certain threshold (the split value). In contrast to (supervised)
learning problems such as classification/regression, which are of local nature, predictive rules for
a global problem such as similarity learning cannot be described by a simple (tree-structured)
partition of X x X: the (symmetric) cells corresponding to the terminal leaves of the binary
decision tree must be sorted in order to define a similarity function.
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5.4.1 TREERANK on a Product Space

We define a similarity tree as a binary tree whose leaves all correspond to symmetric subsets C of
the product space X x X (i.e. V(x,2') € X?; (z,2') € C < (2/,7) € C) and is equipped with a ’left-
to-right’ orientation, that defines a tree-structured collection of similarity functions. Incidentally,
the symmetry property makes it a specific ranking tree, using the terminology introduced in
Clémengon and Vayatis (2009). The root node of a tree T; of depth J > 0 corresponds to the
whole space X x X: Coo = X2, while each internal node (4, k) with j < J and k € {0, ..., 2/ —1}
represents a subset C;, < X 2 whose left and right siblings respectively correspond to (symmetric)
disjoint subsets C;11,25 and Cjy1,25+1 such that C; = Cjy1.2k U Cjy1,2k+1- Equipped with the
left-to-right orientation, any subtree 7 < 7T defines a preorder on X2: the degree of similarity
being the same for all pairs (z,2’) lying in the same terminal cell of 7. Figure 5.7 represents a
fully grown tree of depth 3 with its associated scores.

s
Figure 5.7: A piecewise constant similarity function described by an oriented binary subtree 7T .
For any pair (z,2) € X2, the similarity score s7(x,z’) can be computed very fast in a top-down
manner using the heap structure: starting from the initial value 27 at the root node, at each

internal node C; i, the score remains unchanged if (x, ") moves down to the left sibling and one
subtracts 27~0U*Y from it if (x,2") moves down to the right.

The similarity function related to the oriented tree 7 can be written as:

k
V(z,2') e X2, sp(x,a') = > 27 <1 - w) T{(z,2") € Cji}- (5.30)
Cj,k: terminal leaf of T

Observe that its symmetry results from that of the C;;’s. The ROC curve of the similarity
function s7(z, ') is the piecewise linear curve connecting the knots:

k
) and (Z H(Cjy) Z Cj. ) for all terminal leaf C;  of T,

denoting by H and G the conditional distribution of (X, X’) given Z = —1 and Z = +1,
respectively. Setting p = P{Z = +1} = >, p?, we have G = (1/p) Y, pi - Fi ® F), and

= (1/(1 = p)) 2p Pxp1 - Fr ® Fi. A statistical version can be computed by replacing the
H(C;,;) or G(Cj,;) by their empirical counterpart.

The TREERANK algorithm, a bipartite ranking technique optimizing the ROC curve in a recursive
fashion, has been introduced in Clémencgon and Vayatis (2009) and its properties have been
investigated in Clémengon et al. (2011) at length. Its output consists of a tree-structured scoring
rule (5.30) whose ROC curve can be viewed as a piecewise linear approximation of ROC* obtained
by a Finite Element Method with implicit scheme and is proved to be nearly optimal in the
Dy sense under mild assumptions. The growing stage is performed as follows. At the root, one
starts with a constant similarity function sq(x,2’) = I{(z,2') € Coo} = 1 and after m = 27 + k
iterations, 0 < k < 27, the current similarity function is:

291

2k—
Z ) (@, a') € Cipra} + Y, (m—k—1)-I{(z,2') € Cj 1}

=k
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and the cell C;j, is split so as to form a refined version of the similarity function,

2k 271
Smat(z, ) = Z(m =) - (z,2') € Cjy1.} + Z (m—k—=1)-I{(z,2") € Cj,},
1=0 I=k+1

namely, with maximum (empirical) AUC. Therefore, it happens that this problem boils down to
solve a cost-sensitive binary classification problem on the set C; i, see subsection 3.3 in Clémencon
et al. (2011). Indeed, one may write the AUC increment as

1
AUC(sm+1) = AUC(sm) = 5 H(Cjr)G(Cjx) x (1 = A(Cjsr2n | Ciin)), (5.31)

where A(Cjt12k | Cjk) = G(Cjk\Cjv1,2k) /G (Ciik) + H(Cjs1,20)/H (Cjk)-

Setting p = G(C; 1)/ (H(Cj k) + G(Cj)), the crucial point of the TREERANK approach is that
the quantity 2p(1 — p)A(Cj41,2% | Cj ) can be interpreted as the cost-sensitive error of a classifier
on C; predicting positive label for any pair lying in Cj41.2; and negative label fo all pairs in
C;.x\Cj+1,2 with cost p (respectively, 1 —p) assigned to the error consisting in predicting label +1
given Z = —1 (resp., label —1 given Z = +1), balancing thus the two types of error. Hence, at
each iteration of the similarity tree growing stage, the TREERANK algorithm calls a cost-sensitive
binary classification algorithm, termed LEAFRANK, in order to solve a statistical version of the
problem above (replacing the theoretical probabilities involved by their empirical counterparts)
and split Cjx into Cj11,2k and Cjy1,2x+1. As described at length in Clémencon et al. (2011),
one may use cost-sensitive versions of celebrated binary classification algorithms such as CART
or SVM for instance as LEAFRANK procedure, the performance depending on their ability to
capture the geometry of the level sets R of the posterior probability n(x,z’). As highlighted
above, in order to apply the TREERANK approach to similarity learning, a crucial feature the
LEAFRANK procedure implemented must have is the capacity to split a region in subsets that
are both stable under the reflection (z,2’) € X? — (2/,2). This point is discussed in the next
section. Rate bounds for the TREERANK method in the sup norm sense are also established
therein in the statistical framework of similarity learning, when the set of training examples
{((X4,X,), Zij)}i<j is composed of non independent observations with binary labels, formed
from the original multi-class classification dataset D,,. From a statistical perspective, a learning
algorithm can be derived from the recursive approximation procedure recalled in the previous
section, simply by replacing the quantities H(C) and G(C), by their respective (¢ = —1 and
o = +1) empirical counterparts based on the dataset D,:

Fyn(C) = S MI(Xi, X)) €C, Zij = o1}, (5.32)

Mo i<j
with n, = (2/(n(n —1))) X, ; l{Z;; = 01}, C = X x X’ any borelian. Observe incidentally that
the quantities (5.32) are by no means i.7.d. averages, but take the form of ratios of U-statistics
of degree two (i.e. averages over pairs of observations, c¢f Lee (1990)), see section 3 in Vogel et al.
(2018). For this reason, a specific rate bound analysis (ignoring bias issues) guaranteeing the
accuracy of the TREERANK approach in the similarity learning framework is carried out in the
following subsections.

The symmetry property of the function (5.30) output by the learning algorithm is directly
inherited from that of the candidate subsets C € A of the product space X x X among which the
Cai’s are selected. We new explain at length how to perform the optimization step Eq. (5.31)
for similarity ranking ((3.15) for its bipartite ranking version) in practice in the similarity
learning context. As recalled above, maximizing (5.31) boils down to finding the best classifier
on Cqp C X2 of the form:

gc|cd7k(:c,x') ={(z,2") e C} —{(z,2") e C\Cq} withC < Cay, CE€ A,
in the empirical AUC sense, that is to say minimizing a statistical version of the cost-sensitive
classification error based on {((X;, X;), Z; ;) : 1<i<j<n, (X;,X;)eCaqr}:
Plgejc, . (X, X')=1[2=-1}  Plgeie, (X, X") =-1]Z =1}
]P’{(X,X’)eCd,k|Z=—1} ]P’{(X,X’)ECM ‘ZZl} ’

which is straightforwardly estimated from data in the same manner as in Chapter 3, see Sec-
tion 3.2.4.

AC | Cag) =



97 5.4. The TREERANK Algorithm for Learning Similarities

5.4.2 Learning a Symmetric Function

In Clémencon et al. (2011), it is highlighted that, in the standard ranking bipartite setup,
any (cost-sensitive) classification algorithm (e.g. Neural Networks, CART, RANDOM FOREST,
SVM, nearest neighbours) can be possibly used for splitting, whereas, in the present framework,
classifiers are defined on product spaces and the symmetry issue must be addressed. For simplicity,

assume that X is a subset of the space R?, ¢ > 1, whose canonical basis is denoted by (e1, ..., eg).
Denote by Py (z, ') the orthogonal projection of any point (z,2’) in R? x R? equipped with its
usual Euclidean structure onto the subspace V' = Span((e1, e1), ..., (eq, €4)). Let W be Vs
orthogonal complement in R? x RY.

For any (x,2') € X2, write © = (21,...,24) and o' = (2,...,2)). Introduce f(z,2) :=
(fi(x,2'), ..., faq(z,2’)) € R??, which satisfies, for any j € {1,...,q}:

filw, ') == (z; + 2})/V2 and  fiyq(z,2') = sgn (fvz(x,x') - fﬁ(m,m/)) (z; —2f)/vV2,  (5.33)
where [(z,r) = argmaxy( |z — 2 and sgn(-) : R — {-1,0,+1} is the sign function.
Observe that, by construction, f(z,2’) = f(2',z) for all (z,2") € X2. The first ¢ components
of f(x,2') are the coordinates of the projection Py (z,z’) of (z,z’) onto the subspace V in
an orthonormal basis of V (say {(1/v/2)(e1, e1), ..., (1/v2)(eq, €4)} for instance) its last
components are formed by a simple data-dependent transformation of the coordinates of the
projection Py (z,2') = ((z1 — #))/V2, ..., (x4 — 2,)/v/2) of (z,2") onto W expressed in a given
orthonormal basis (say {(1/v2)(e1, —e1), ..., (1/v/2)(eq, —e4)} for instance). The following
lemma guarantees useful properties of our symmetric transformation of the input space for the
derivation of symmetric classifiers.

Lemma 5.7. Introduce f defined in Eq. (5.33). Let s : X* — R. Then, s is symmetric if and
only if there exists k : R x RY — R such that: ¥(z,2') € X%, s(z,2") = (ko f)(z,2').

Proof. We first prove the implication. Assume that s is symmetric. Let (z,2’) € X2. Observe
that:
2 2
T = g [Py(z,2') + Pw(z,2)] and 2 = g [Py (z,2") — Pw(z,2")].
We denote by f1)(z,2’) (resp. f®(z,2’)) the first (resp. last) ¢ components of f(z,z’). Denote
by y(z, ') := sgn(zl(x}z)fx;(gﬂ w,)), observe that Py (x,z') = 7(9:,x’)~f(2)(1:,x’). If~y(z,2') = +1,
we have:

s(x,2') = s (2 [f(l)(x,x’) + f(2)(a:,x')] 7g [f(l)(ac,x’) — @ (x,x’)]) , (5.34)

If v(x,2') = —1, the symmetry of s implies that:

s(z,2") = s(a’,2) = s (? [f(l)(x,x’) +f® (I,x’)] ,

2
[0 - 1] )
Finally, if v(z,2') = 0, then = 2’ and Eq. (5.34) is also true. We have proven from the
symmetry of s implies that we can write s(z,2’) as Eq. (5.34), thus that for any x, 2’ € X2, we
have s(z,z') = (ko f)(z,2').

We now prove the converse. Assume that there exist k& : R? x R? — R such that V(z,2’) €
X2 s(x,2") = (kof)(x,2"). However for any (z,2') € X2, f(2',2) = f(x,2'), thus f is symmetric,
and s is symmetric. O

In order to get splits that are symmetric w.r.t. the reflection (x,2') — (2/,2), we propose
to build directly classifiers of the form (k o f)(z,2’). In practice, this splitting procedure
referred to as SYMMETRIC LEAFRANK and summarized below simply consists in using as input
space R? x R rather than R?? and considering as training labeled observations the dataset
{(f(Xi, X)), Zij): 1<i<j<n, (X;,X;)eCCqr} when running a cost-sensitive classification
algorithm. Figure 5.8 represents a split produced by the LEAFRANK procedure.



Chapter 5. Similarity Ranking Theory 98

L

Similarity ranking tree Split produced by LeafRank

Figure 5.8: Symmetric split produced by the SYMMETRIC LEAFRANK procedure on a bounded
two-dimensional space.

Just like in the original version of the TREERANK method, the growing stage can be followed
by a pruning procedure, where children of a same parent node are recursively merged in order
to produce a similarity subtree that maximizes an estimate of the AUC criterion, based on
cross-validation usually, one may refer to section 4 in Clémengon et al. (2011) for further details.
In addition, as in the standard bipartite ranking context, the RANKING FOREST approach
(Clémengon et al., 2013), an ensemble learning technique based on TREERANK that combines
aggregation and randomization, can be implemented to dramatically improve stability and
accuracy of similarity tree models both at the same time, while preserving their advantages (e.g.
scalability, interpretability).

SYMMETRIC LEAFRANK
e Input. Pairs {((X;, X;), Zi;): 1 <i<j<n, (X;,X;)€ Car} lying in
the (symmetric) region to be split. Classification algorithm A.
e Cost. Compute the number of positive pairs lying in the region Cq 1
~ Dicicjen (X3, X5) € Capy Zij = +1}
Z1<i<j<n H{(XMXJ') € Cd,k}

e Cost-sensitive classification. Based on the labeled observations
{(f(leXJ)7 Ziaj) cl<i< .7 <n, (XhXj) € Cd,k},

run algorithm A with cost p for the false positive error and cost 1 — p for
the false negative error to produce a (symmetric) classifier g(z,z’) on Ca,k.

e Output Define the subregions:

Cat12k = {(z,2") € Ca : g(x,2") = +1} and Cay1,26+1 = Cak\Cas1,2k-

5.4.3 Generalization Ability - Rate Bound Analysis

We now prove that the theoretical guarantees formulated in the ROC space equipped with the
sup norm that have been established for the TREERANK algorithm in the standard bipartite
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ranking setup in Clémencon and Vayatis (2009) remain valid in the similarity learning framework.
The rate bound result stated below is the analogue of Corollary 1 in Clémengon and Vayatis
(2009). The following technical assumptions are involved:

e the feature space X' is bounded;
e a— ROC*(a) is twice differentiable with a bounded first order derivative;

the class A is intersection stable, i.e. ¥(C, C') € A%, C nC' € A;

the class A has finite VC dimension V' < 4o0;
e we have {(z,7') € X% : n(x,2’') = q} € A for any g € [0, 1].

Theorem 5.8. Assume that the conditions above are fulfilled. Choose D = D,, so that D, ~
Viogn, as n — o, and let sp, denote the output of the SIMILARITY TREERANK algorithm.
Then, for all § > 0, there exists a constant \ s.t., w.p. = 1 — 6, we have for all n > 2:

Doy (sp,,s*) < exp(—A/logn).

Proof. The proof is based on usual control of U-statistics, as provided in Corollary 4.5 of Chapter 4
and introduced in Clémengon et al. (2016) (Proposition 2). This crucial result permits to control
the deviation of the progressive outputs of the SIMILARITY TREERANK algorithm and those of
the nonlinear approximation scheme (based on the true quantities) investigated in Clémengon
and Vayatis (2009). The proof can be thus derived by following line by line the argument of
Corollary 1 in Clémengon and Vayatis (2009). O

This universal logarithmic rate bound may appear slow at first glance but attention should be
paid to the fact that it directly results from the hierarchical structure of the partition induced by
the tree construction and the global nature of the similarity learning problem. As pointed out in
Clémengon and Vayatis (2009) (see Remark 14 therein), the same rate bound holds true for the
deviation in sup norm between the empirical ROC curve ].:TO\C(S D, -) output by the TREERANK
algorithm and the optimal curve ROC*.

5.5 Conclusion

We have introduced a rigorous probability framework to study similarity learning from the
novel perspective of pairwise bipartite ranking and pointwise ROC optimization. We derived
statistical guarantees for generalization that do not depend on the distribution, as well as stronger
data-dependent guarantees that do. As far as we know, we have provided the first empirical
illustration of fast generalization bounds using simulated data, which confirms our theoretical
results. Finally, we presented an extension of the well-known TREERANK algorithm for bipartite
ranking and extended its theoretical analysis to similarity ranking, using results on U-statistics.

Our study opens promising directions of future work. We are especially interested in extending
our results to allow the rejection of queries from unseen classes (e.g., unknown identities) at test
time (see for instance Bendale and Boult, 2015). This could be achieved by incorporating a loss
function to encourage the score of all positive pairs to be above some fixed threshold, below
which we would reject the query.

The similarity ranking setting presented in this chapter is a direct mathematical translation of the
1:1 biometric identification/verification problem. While our generalization bounds give security
guarantees for that problem, they do not imply new practical approaches to 1:1 verification. The
next chapters focus on that aspect. Precisely, Chapter 6 focuses on alleviating the scalability
issues encountered when dealing with large-scale problems, using approximation methods of
U-statistics combined with distributed learning. Additionally, Chapter 7 sketches practical
gradient-descent approaches to similarity ranking.
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Chapter 6

Distributed U-Statistics

Summary: Pairwise learning problems involves functionals on pairs of obser-
vations, as does the specific case of similarity ranking of Chapter 5, which is a
direct formalization of the 1:1 biometric verification problem. These problems
often involve summing a quadratic number of observations, which implies
a prohibitive number of operations for any modern large scale application.
Hence, they requires sensible approximations that do not sacrifice statistical
accuracy. Most functionals in these problems are U-statistics, a well-studied
type of statistic, for which a popular sampling-based approximation is incom-
plete U-statistics, presented in Section 4.4 of Chapter 4. The extension of
those sampling approximations to similarity ranking (Chapter 5) is a direct
consequence of Section 4.4, but it assumes that all of the data is accessible
for the computation of the U-statistic. However, large-scale learning often
requires data-parallelism or learns with small random subsamples of the data.
For that reason, this chapter introduces techniques to estimate U-statistics in a
distributed environment, and studies their compromise between statistical ac-
curacy and computing time. We prove the benefits brought by our techniques
in terms of variance reduction, and extend our results to design distributed
gradient descent algorithms for tuplewise empirical risk minimization. Our
analysis builds on top of the properties for U-statistics presented in Chapter 4.
Our results are supported by numerical experiments in pairwise statistical
estimation and learning on synthetic and real-world datasets.

6.1 Introduction

Statistical machine learning has seen dramatic development over the last decades, due partially
to the availability of massive datasets, observed in particular in biometrics. For example, the
largest public facial recognition dataset now contains 8.2 million images (Guo et al., 2016), and
private datasets are much larger. Another contributing factor is the increasing need to perform
predictive/inference/optimization tasks in a wide variety of domains. Those two elements have
given a considerable boost to the field and led to successful applications. In parallel to those
advances, there has been an ongoing technological progress in the architecture of data repositories
and distributed systems, allowing to process ever larger (and possibly complex, high-dimensional)
data sets gathered on distributed storage platforms.

This trend is illustrated by the development of many easy-to-use cluster computing frameworks
for large-scale distributed data processing. These frameworks implement the data-parallel setting,
in which data points are partitioned across different machines which operate on their partition
in parallel. Some striking examples are Apache Spark Zaharia et al. (2010) and Petuum Xing
et al. (2015), the latter being fully targeted to machine learning. The goal of such frameworks
is to abstract away the network and communication aspects in order to ease the deployment
of distributed algorithms on large computing clusters and on the cloud, at the cost of some
restrictions in the types of operations and parallelism that can be efficiently achieved. However,
these limitations as well as those arising from network latencies or the nature of certain memory-
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intensive operations are often ignored or incorporated in a stylized manner in the mathematical
description and analysis of statistical learning algorithms (see e.g. Balcan et al. (2012); III et al.
(2012); Bellet et al. (2015b); Arjevani and Shamir (2015)). The implementation of statistical
methods proved to be theoretically sound may thus be hardly feasible in a practical distributed
system, and seemingly minor adjustments to scale-up these procedures can turn out to be
disastrous in terms of statistical performance, see e.g. the discussion in Jordan (2013). This
greatly restricts their practical interest in some applications and urges the statistics and machine
learning communities to get involved with distributed computation more deeply (Bekkerman
et al., 2011).

In this chapter, we propose to study these issues in the context of tuplewise estimation and
learning problems, where the statistical quantities of interest are not basic sample means but
come in the form of averages over all pairs (or more generally, d-tuples) of data points. Such
data functionals are known as U-statistics (Lee, 1990; de la Pena and Giné, 1999), and many
empirical quantities describing global properties of a probability distribution fall in this category
(e.g. the sample variance, the Gini mean difference, Kendall’s tau coefficient). U-statistics are
also natural empirical risk measures in several learning problems such as ranking (Clémengon
et al., 2008), metric learning (Vogel et al., 2018), cluster analysis (Clémengon, 2014) and risk
assessment (Bertail and Tressou, 2006). In the similarity ranking problem of the preceding chapter
(Chapter 5), all estimators are combinations of U-statistics. The behavior of these statistics is
well-understood and a sound theory for empirical risk minimization based on U-statistics is now
documented in the machine learning literature (Clémengon et al., 2008), but the computation of
a U-statistic poses a serious scalability challenge as it involves a summation over an exploding
number of pairs (or d-tuples) as the dataset grows in size. In the centralized (single machine)
setting, this can be addressed by appropriate subsampling methods, which have been shown to
achieve a nearly optimal balance between computational cost and statistical accuracy (Clémengon
et al., 2016). Unfortunately, naive implementations in the case of a massive distributed dataset
either greatly damage the accuracy or are inefficient due to a lot of network communication (or
disk I/0). This is due to the fact that, unlike basic sample means, a U-statistic is not separable
across the data partitions.

Our main contribution is to design and analyze distributed methods for statistical estimation and
learning with U-statistics that guarantee a good trade-off between accuracy and scalability. Our
approach incorporates an occasional data repartitioning step between parallel computing stages
in order to circumvent the limitations induced by data partitioning over the cluster nodes. The
number of repartitioning steps allows to trade-off between statistical accuracy and computational
efficiency. To shed light on this phenomenon, we first study the setting of statistical estimation,
precisely quantifying the variance of estimates corresponding to several strategies. Thanks to
the use of Hoeffding’s decomposition (Hoeffding, 1948), our analysis reveals the role played by
each component of the variance in the effect of repartitioning. We then discuss the extension of
these results to statistical learning and design efficient and scalable stochastic gradient descent
algorithms for distributed empirical risk minimization. Finally, we carry out some numerical
experiments on pairwise estimation and learning tasks on synthetic and real-world datasets to
support our results from an empirical perspective.

The chapter is structured as follows. Section 6.2 reviews background on U-statistics and their
use in statistical estimation and learning, and discuss the common practices in distributed data
processing. Section 6.3 deals with statistical tuplewise estimation: we introduce our general
approach for the distributed setting and derive (non-)asymptotic results describing its accuracy.
Section 6.4 extends our approach to statistical tuplewise learning. We provide experiments
supporting our results in Section 6.5, and we conclude in Section 6.6.

6.2 Background

In this section, we first review the definition and properties of U-statistics, and discuss some
popular applications in statistical estimation and learning. We then discuss the recent randomized
methods designed to scale up tuplewise statistical inference to large datasets stored on a single
machine. Finally, we describe the main features of cluster computing frameworks.
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6.2.1 U-Statistics: Definition and Applications

U-statistics are the natural generalization of i.i.d. sample means to tuples of points. We state the
definition of U-statistics in their generalized form, where points can come from K > 1 independent
samples. Note that we recover classic sample mean statistics in the case where K = d; = 1.

Definition 6.1. (GENERALIZED U-STATISTIC) Let K > 1 and (di, ..., di) € N*5. For each
kefl,...,K}, let X¢q, . npy = (Xl(k), ce, Xr(ﬁ)) be an independent sample of size ny = dy,
composed of i.i.d. random variables with values in some measurable space Xy, with distribution
Fy(dx). Let h: del X - X XﬁK — R be a measurable function, square integrable with respect to
the probability distribution F = F®" @ .. @ F2 . Assume w.lo.g. that h(xM, ... x5 s
symmetric within each block of arguments x®) (valued in X,?’“), The generalized (or K-sample)
U-statistic of degrees (dy, ..., di) with kernel H is defined as

1 (1) x@ (£)
Un(h) = 05,00 ——— > O AXG), XY XTY), (6.1)
k=1\d,/) ©L Ik

where 3 ;  denotes the sum over all (Z:) subsets X( ) = (X(k) X(f:) related to a set Iy, of

TR i

dy indezes 1 < iy < ... <iq, <ng andn = (ny, ..., ng).

The U-statistic Uy (h) is known to have minimum variance among all unbiased estimators of
the parameter m(h) = E[h(Xl(l), ce Xéi), ce XfK), ce Xc(lf))]. The price to pay for
this low variance is a complex dependence structure exhibited by the terms involved in the
average (6.1), as each data point appears in multiple tuples. The (non) asymptotic behavior of
U-statistics and U-processes (i.e., collections of U-statistics indexed by classes of kernels) can be
investigated by means of linearization techniques (Hoeffding, 1948) combined with decoupling
methods (de la Pena and Giné, 1999), reducing somehow their analysis to that of basic 4.i.d.
averages or empirical processes. One may refer to Lee (1990) for an account of the asymptotic
theory of U-statistics, and to van der Vaart (2000) (Chapter 12 therein) and de la Pena and Giné
(1999) for nonasymptotic results.

U-statistics are commonly used as point estimators for inferring certain global properties of a
probability distribution as well as in statistical hypothesis testing. Popular examples include the
(debiased) sample variance, obtained by setting K = 1, d; = 2 and h(xq,22) = (v1 — 22)?, the
Gini mean difference, where K = 1, d; = 2 and h(z1,22) = |21 — 22|, and Kendall’s tau rank
correlation, where K = 2, dy = dy = 1 and h((21,91), (x2,92)) = {(z1 — z2) - (y1 — y2) > 0}.

U-statistics also correspond to empirical risk measures in statistical learning problems such
as clustering (Clémencon, 2014), metric learning (Vogel et al., 2018) and multipartite ranking
(Clémencon and Robbiano, 2014). The generalization ability of minimizers of such criteria over a
class ‘H of kernels can be derived from probabilistic upper bounds for the maximal deviation of
collections of centered U-statistics under appropriate complexity conditions on H (e.g., finite VC
dimension) (Clémengon et al., 2008; Clémencon et al., 2016).

Below, we describe the example of multipartite ranking used in our numerical experiments
(Section 6.5). We refer to Clémengon et al. (2016) for details on more learning problems involving
U-statistics.

Example 6.2 (Multipartite Ranking). Consider items described by a random vector of features
X € X with associated ordinal labels Y € {1,..., K}, where K = 2. The goal of multipartite
ranking is to learn to rank items in the same preorder as that defined by the labels, based on
a training set of labeled examples. Rankings are generally defined through a scoring function
s : X — R transporting the natural order on the real line onto X. Given K independent samples,
the empirical ranking performance of s(x) is evaluated by means of the empirical VUS (Volume
Under the ROC Surface) criterion (Clémengon and Robbiano, 2014):

VUS(s) = Z 2 Is(XY) < ... < s(x5)y, (6.2)
Hk lnkz ix=1

which is a K-sample U-statistic of degree (1,...,1) with kernel hs(x1, ..., vx) = I{s(x1) <
. < s(zk)}
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In Chapter 5, we analyzed the learning rates achieved by minimizing functionals akin to U-
statistics. In the large-scale setting, solving this problem is computationally costly due to the
very large number of training pairs. In particular, given a sample {(X;,Y;)}", c X x {1,..., K},
averages over the positive pairs, i.e. of the same class, and the negatives pairs are sums
over respectively Zszl nik(ng — 1)/2 and Y, _, npny pairs, with n = > | I[{Y = k} for any
ke{l,...,K}. In the setting where we have a large number of (rather balanced) classes, as in a
biometric identification example where a class corresponds to an identity, the number of pairs is
quadratic in the number of observations, which makes the approach unpractical. One can extend
the theoretical guarantees of Chapter 5 to learning with sampling-based approximations with
much lower computational cost, as detailed in Vogel et al. (2018) (Section 4), which is achieved
using incomplete U-statistics.

6.2.2 Large-Scale Tuplewise Inference with Incomplete U-statistics

The cost related to the computation of the U-statistic (6.1) rapidly explodes as the sizes of the
samples increase. Precisely, the number of terms involved in the summation is (Zi) X oee X (’(Z(( ),
which is of order O(n%*++dx) when the ny’s are all asymptotically equivalent. Whereas
computing U-statistics based on subsamples of smaller size would severely increase the variance
of the estimation, the notion of incomplete generalized U-statistic (Blom, 1976) enables to
significantly mitigate this computational problem while maintaining a good level of accuracy.

Definition 6.3. (INCOMPLETE GENERALIZED U-STATISTIC) Let B > 1. The incomplete version
of the U-statistic (6.1) based on B terms is defined by:

~ 1 1 K

Us(H)=5 > WXy, .. Xp0) (6.3)
I=(11, ...,IK)EDB

where D is a set of cardinality B built by sampling uniformly with replacement in the set A of

vectors of tuples ((igl), ce iglll)), ce (igK), ce iff;))), where 1 < igk) <...< igz) < ny and

1<k<K.

Note incidentally that the subsets of indices can be selected by means of other sampling schemes
(Clémencon et al., 2016), but sampling with replacement is often preferred due to its simplicity.
In practice, the parameter B should be picked much smaller than the total number of tuples to
reduce the computational cost. Like (6.1), the quantity (6.3) is an unbiased estimator of m(h)
but its variance is naturally larger:

Var(Ug (h)) = (1 - %)Var(Un(h)) + %Var(h(Xl(l), ey XS, (6.4)

The recent work in Clémencon et al. (2016) has shown that the maximal deviations between (6.1)
and (6.3) over a class of kernels H of controlled complexity decrease at a rate of order O(1/+/B)
as B increases. An important consequence of this result is that sampling B = O(n) terms is
sufficient to preserve the learning rate of order 4/logn/n of the minimizer of the complete risk
(6.1), whose computation requires to average O(n%*+x) terms. In contrast, the distribution
of a complete U-statistic built from subsamples of reduced sizes nj, drawn uniformly at random
is quite different from that of an incomplete U-statistic based on B = []r_, (Zf:) terms sampled
with replacement in A, although they involve the summation of the same number of terms.
Empirical minimizers of such a complete U-statistic based on subsamples achieve a much slower
learning rate of O(y/log(n)/nt/(di+-+dx)). We refer to Clémencon et al. (2016) for details and
additional results.

We have seen that approximating complete U-statistics by incomplete ones is a theoretically
and practically sound approach to tackle large-scale tuplewise estimation and learning problems.
However, as we shall see later, the implementation is far from straightforward when data is stored
and processed in standard distributed computing frameworks, whose key features are recalled
below.
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6.2.3 Practices in Distributed Data Processing

Data-parallelism, i.e. partitioning the data across different machines which operate in parallel, is
a natural approach to store and efficiently process massive datasets. This strategy is especially
appealing when the key stages of the computation to be executed can be run in parallel on each
partition of the data. As a matter of fact, many estimation and learning problems can be reduced
to (a sequence of) local computations on each machine followed by a simple aggregation step. This
is the case of gradient descent-based algorithms applied to standard empirical risk minimization
problems, as the objective function is nicely separable across individual data points. Optimization
algorithms operating in the data-parallel setting have indeed been largely investigated in the
machine learning community, see Bekkerman et al. (2011); Boyd et al. (2011); Arjevani and
Shamir (2015); Smith et al. (2018) and references therein for some recent work.

Because of the prevalence of data-parallel applications in large-scale machine learning, data
analytics and other fields, the past few years have seen a sustained development of distributed
data processing frameworks designed to facilitate the implementation and the deployment on
computing clusters. Besides the seminal MapReduce framework (Dean and Ghemawat, 2008),
which is not suitable for iterative computations on the same data, one can mention Apache Spark
(Zaharia et al., 2010), Apache Flink (Carbone et al., 2015) and the machine learning-oriented
Petuum (Xing et al., 2015). In these frameworks, the data is typically first read from a distributed
file system (such as HDFS, Hadoop Distributed File System) and partitioned across the memory
of each machine in the form of an appropriate distributed data structure. The user can then
easily specify a sequence of distributed computations to be performed on this data structure
(map, filter, reduce, etc.) through a simple API which hides low-level distributed primitives
(such as message passing between machines). Importantly, these frameworks natively implement
fault-tolerance (allowing efficient recovery from node failures) in a way that is also completely
transparent to the user.

While such distributed data processing frameworks come with a lot of benefits for the user, they
also restrict the type of computations that can be performed efficiently on the data. In the rest of
this chapter, we investigate these limitations in the context of tuplewise estimation and learning
problems, and propose solutions to achieve a good trade-off between accuracy and scalability.

6.3 Distributed Tuplewise Statistical Estimation

In this section, we focus on the problem of tuplewise statistical estimation in the distributed
setting (an extension to statistical learning is presented in Section 6.4). We consider a set of
N > 1 workers in a complete network graph (i.e., any pair of workers can exchange messages).
For convenience, we assume the presence of a master node, which can be one of the workers and
whose role is to aggregate estimates computed by all workers.

For ease of presentation, we restrict our attention to the case of two sample U-statistics of degree
(1,1) (K =2 and dy = dy = 1), see Remark 6.7 in Section 6.3.3 for extensions to the general
case. We denote by D,, = {X1,...,X,} the first sample and by Q,, = {Z1,...,Z,,} the second
sample (of sizes n and m respectively). These samples are distributed across the N workers. For
1€ {l,..., N}, we denote by R; the subset of data points held by worker i and, unless otherwise
noted, we assume for simplicity that all subsets are of equal size |R;| = (n + m)/N € N. The
notations R and RZ respectively denote the subset of data points held by worker i from D,
and Q,,, with RX URZ = R;. We denote their (possibly random) cardinality by n; = |R¥|
and m; = |RZ|. Given a kernel h, the goal is to compute a good estimate of the parameter
U(h) = E[h(X1, Z1)] while meeting some computational and communication constraints.

6.3.1 Naive Strategies

Before presenting our approach, we start by introducing two simple (but ineffective) strategies to
compute an estimate of U(h). The first one is to compute the complete two-sample U-statistic
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associated with the full samples D,, and Q,,:
1 n m
Un(h) = — h Xy, Z)), 6.5
()= o 2 B0 2) (65)

with n = (n,m). While U,(h) has the lowest variance among all unbiased estimates that can be
computed from (D,,, Q,,), computing it is a highly undesirable solution in the distributed setting
where each worker only has access to a subset of the dataset. Indeed, ensuring that each possible
pair is seen by at least one worker would require massive data communication over the network.
Note that a similar limitation holds for incomplete versions of (6.5) as defined in Definition 6.3.

A feasible strategy to go around this problem is for each worker to compute the complete U-
statistic associated with its local subsample R;, and to send it to the master node who averages
all contributions. This leads to the estimate

N
1 1
Unn(h) = — D Ur,(h) where Ug,(h) = —— > > h(Xy, Z). (6.6)
N i=1 AL sy

Note that if min(n;,m;) = 0, we simply set Ug,(h) = 0.

Alternatively, as the R;’s may be large, each worker can compute an incomplete U-statistic
Up,r,(h) with B terms instead of Ug,, leading to the estimate

N 1 Y. ~ 1
Un,v.5(h) = > Usr,(h) where Upg,(h) = 5 > h(Xk ), (6.7)
=1

(k,D)eRi,B

with R; p a set of B pairs built by sampling uniformly with replacement from the local subsample

As shown in Section 6.3.3, strategies (6.6) and (6.7) have the undesirable property that their
accuracy decreases as the number of workers N increases. This motivates our proposed approach,
introduced in the following section.

6.3.2 Proposed Approach

The naive strategies presented above are either accurate but very expensive (requiring a lot of
communication across the network), or scalable but potentially inaccurate. The approach we
promote here is of disarming simplicity and aims at finding a sweet spot between these two
extremes. The idea is based on repartitioning the dataset a few times across workers (we keep
the repartitioning scheme abstract for now and postpone the discussion of concrete choices to
subsequent sections). By alternating between parallel computation and repartitioning steps, one
considers several estimates based on the same data points. This allows to observe a greater
diversity of pairs and thereby refine the quality of our final estimate, at the cost of some additional
communication.

Formally, let 7' be the number of repartitioning steps. We denote by R! the subsample of worker
i after the ¢-th repartitioning step, and by Ug:(h) the complete U-statistic associated with RE.
At each step t € {1,...,T}, each worker i coﬁlputes Ug:(h) and sends it to the master node.
After T steps, the master node has access to the followiné estimate:

~

1 T
Unnr(h) = o DIUL (B, (6.8)
t=1

where U}, v (h) = (1/N) Zf\il Ug:(h). Similarly as before, workers may alternatively compute

incomplete U-statistics U B,Rg(h) with B terms. The estimate is then:

~

1 &~
Unnpr(h) = Y UL N p(h), (6.9)
t=1

where ﬁfl,N,B(h) = (1/N) Zf\il (73773¢ (h). These statistics, and those introduced in Section 6.3.1
which do not rely on repartition, are summarized in Figure 6.1. Of course, the repartitioning
operation is rather costly in terms of runtime so 7" should be kept to a reasonably small value.
We illustrate this trade-off by the analysis presented in the next section.
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Figure 6.1: Graphical summary of the statistics that we compare: with/without repartition and
with/without subsampling. Note that {(o;,7;)}7_; denotes a set of T independent couples of
random permutations in &,, x &,,.

with

6.3.3 Analysis

In this section, we analyze the statistical properties of the various estimators introduced above.
We focus here on repartitioning by proportional sampling without replacement (prop-SWOR).
Prop-SWOR creates partitions that contain the same proportion of elements of each sample:
specifically, it ensures that at any step ¢ and for any worker i, |R!| = (n+m)/N with [R"™*| = n/N
and |sz| = m/N. We discuss the practical implementation of this repartitioning scheme as well
as some alternative choices in Section 6.3.5 and Section 6.3.4.

All estimators are unbiased when repartitioning is done with prop-SWOR. We will thus compare
their variance. Our main technical tool is a linearization technique for U-statistics known as
Hoeffding’s Decomposition (see Hoeffding (1948); Clémencon et al. (2008); Clémencon et al.
(2016)).

Definition 6.4. (HOEFFDING’S DECOMPOSITION) Let hy(x) = E[h(z, Z1)], ha(z) = E[h(X1, 2)]
and ho(z,z) = h(z, z) — hi(x) — ha(2) + U(h). Un(h) — U(h) can be written as a sum of three
orthogonal terms:

Un(h) = U(h) = To(h) + Tin(h) + Wa(h),

where Ty, (h) = (1/n) Y p_; hi(Xk) — U(h) and T,,,(k) = (1/m) >, ho(Z)) — U(h) are sums of
independent r.v.’s while Wy (h) = (nm)~1 >0 7" ho(Xk, Z)) is a degenerate U-statistic (i.e.
E[h(X1, Z1)|X1]) = U(h) and E[h(X1, Z1)|Z1] = U(h)).

This decomposition is very convenient as the two terms T, (h) and T,,(h) are decorrelated
and the analysis of Wy(h) (a degenerate U-statistic) is well documented (Hoeffding, 1948;
Clémengon et al., 2008; Clémencon et al., 2016). It will allow us to decompose the variance of
the estimators of interest into single-sample components o3 = Var(h; (X)) and 03 = Var(hy(Z2))
on the one hand, and a pairwise component 02 = Var(ho(X1, Z1)) on the other hand. Denoting
0?2 = Var(h(X1, Z1)), we have 02 = 03 + 02 + 03.

It is well-known that the variance of the complete U-statistic Uy, (h) can be written as

2 2 2
Var(Un(h)) = % + % + %

Our first result gives the variance of the estimators which do not rely on a repartitioning of the
data with respect to the variance of Uy (h).

Theorem 6.5. If the data is distributed over workers using prop-SWOR, we have:

2

Var(Un,n(h)) = Var(Uan(h)) + (N — 1)%’
Var(Un,n,5(h)) = (1 - ;) Var(Un n () + %.
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Proof. First, consider Var(Uy, ). Hoeffding’s decomposition implies that:

N
Une () = U(R) = Tulh) + Toh) + - > —— 30 3 ho(X;, 7)),
k=1

oMo i€ERY jERE
as well as the following properties, for any V((k,1), (i,5)) € ({1,...,n} x {1,...,m})?,

COV(hl(Xk), hQ(Zl)) = 0,
COV(hl(Xj),ho(Xk,Zl)) =0 and COV(hQ(Zj),ho(Xk,Zl)) = 0, (610)
COV(hO(Xivzj)a hO(Xka Zl)) =0 if (17.]) # (kal)a
which imply the result. The variance of the complete U-statistic Uy, is just the special case N = 1
of the variance Uy, n. Explicitely,

02> o2 No?

Now for (7n,N’B(h)7 since U’n’N’B conditioned upon the data has expectation Uy n(h), i.e.

E | T35 () Dy Qs (R | = Unn (B),
the law of total variance implies,
Var(Un,n,5(h)) = Var(Un, n(h)) + E[Var (Tn, 5,5 (h) [ Dn, Qs (R )21,

1 ~
EVar(Ur, 5 (h) D, Q. (Ri)I-)],

(Since the draws of B pairs on different workers are independent),
1

= Var(Upn,n(h)) + i [;Var(Ugl) + é\/ar(h(X7 Z))] )

(See Clémencgon et al. (2016))

= Var(Un,n(h)) +

1 1
= (1 - B) Var(Un,n(h)) + ﬁVar(h(X, 7)),
which concludes our proof. Explicitly,

~ 1 o? 03 No? 1
VaI'(Un’N,B(h)) = <1 — B) (n + E + i, ) + ﬁVar (h(X, Z)) .

O

Theorem 6.5 precisely quantifies the excess variance due to the distributed setting if one does
not use repartitioning. Two important observations are in order. First, the variance increase
is proportional to the number of workers N, which clearly defeats the purpose of distributed
processing. Second, this increase only depends on the pairwise component of of the variance. In
other words, the average of U-statistics computed independently over the local partitions contains
all the information useful to estimate the single-sample contributions, but fails to accurately
estimate the pairwise contributions. The resulting estimates thus lead to significantly larger
variance when the choice of kernel and the data distributions imply that o3 is large compared to
ol and/or o7. The extreme case happens when Uy (h) is a degenerate U-statistic, i.e. o3 = 03 = 0
and o2 > 0, which is verified for example when h(z,2) = z- 2z and X, Z are both centered random
variables.

We now characterize the variance of the estimators that leverage data repartitioning steps.

Theorem 6.6. If the data is distributed and repartitioned between workers using prop-SWOR,
we have:

Var(Un.n.1(h)) = Var(Ua(h)) + (N — 1)—22

~ ~ 1 2
Var(Un,v,5.1(h) = Var(Un, vz () = 7 Var(Un,v () + ﬁ.
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Proof. We first detail the derivation of Var (U, .1 (h)). Define the Bernouilli 7.v. €l (k) as equal
to one if X}, is in partition ¢ at time ¢, and 51mllar1y v4(1) is equal to one if Z; is in partition 4
at time t. Note that for ¢ # t1, e!(k) and € ! (k1) are independent, as well as ~; (/) and ’yfll (lh).
Additionally, €!(k) and ;! (l) are independent for any t,to € {1,...,T}>.

Hoeffding’s decomposition implies:

Un.n(h) = Un(h) =

uMz

im Z Z (NZei( — Dho(Xk, Z1).

The law of total variance, the fact that conditioned upon the data l}n, ~,7(h) is an average of T'
independent experiments and the properties of Eq. (6.10) imply:

Var (O . (h)) = Var (Ua () + E [Var (T v e (0)| D0, Q)]

— Var (Uy (h)) + lE [Var (U} n(h)[Dn, Qm)]

= Var (Uy(h)) + 208 Z Cov (¢, (!, (1., (7, (1) . (6.11)

On the other hand, observe that:

—N—* ifi; # 19,

6.12
N—2_N—1 if i1 = i9. ( )

Cov (e, (1), (1), €, ()7, (1)) = {

The result is obtained by plugging Eq. (6.12) in Eq. (6.11). Explicitly,

N-1,
nmT

Var (ﬁmN,T(h)) = Var Uy (h)) +

Using that E[(}n’N,B,T(h)\Dn, Om,67] = AH,N’T(h), we now compute Var(ﬁn,N,B,T(h)) by
decomposing it as the variance of its conditional expectation plus the expectation of its conditional
variance. It writes:

Var(ﬁn’N,B’T(h)) = Var (ﬁn,N,T(h)> +E [Var (ﬁn,N’B’ﬂDn, O, €, 7)]

A 1 ~
— Var (Un,N,T(h)) + SE [Var (UB7R§,|DTL, O, 6,7)]
(Since the draws of B pairs on different workers are independent)
A~ 1 1 1
— Var (Un,N,T(h)) + == [—BVar (Um) + 5 Var(h(X, Z))]
(See Clémencon et al. (2016).)

_ Var(h(X, 2)) 1 o? o2 o3 N-1 N
=~ ~rs T \UTre) 0w T VT T 1B

which gives the desired result after reorganizing the terms.
O

See Fig. 6.2 for illustrations of these formulas with two example cases. The figure represent the
variance of each estimator as a function of the number of evaluated pairs for proportional SWOR.

Theorem 6.5 and Theorem 6.6 show that the influence of the kernel h and the distribution of X
and Z on the expression of the variances is summarized by the variance derived from pairwise
information o3, that issued from instances of the majority class o7 and that from instances of
the minority class o3. The value of repartitioning arises from the fact that the term that account
for pairwise variance for lA]m ~,r(h) is almost T times lower that than of Uy, (h). Repartitioning
is thus interesting when the pairwise variance term is significant in front of the other terms.
Practical settings are presented in Section 6.5.
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Figure 6.2: Theoretical variance as a function of the number of evaluated pairs for different
estimators under prop-SWOR, with n = 100,000, m = 200 and N = 100.

Since n » m, it suffices that o3 be low for the influence of pairwise variance to be significant,
which is illustrated in Fig. 6.2. It shows that for a same number of pairs evaluated, one can
only expect a very limited precision for the estimators that do not use redistribution. The
left-hand side figure in Fig. 6.2 shows the importance of redistribution in some cases. Indeed,
it shows that for a same number of pairs, one can only expect a very limited precision for the
estimators Var(Up, n(h)) and Var(Un n 5(h)), compared to those presented in Theorem 6.6 that
use redistribution. When o2 is not small, the variance of U,, mostly originates from the rarity of
the minority class which implies that redistributing does not bring estimates that are significantly
more accurate.

On the other hand, the right-hand side figure in Fig. 6.2 shows that this only holds for certain
types of statistics, and that for different parameters 02, 0%, 03, redistribution of the instances on
the workers does not lead to more accurate estimators.

Finally, the results of Theorem 6.6 imply that, in the case of proportional SWOR and for a fixed
budget of evaluated pairs, using all pairs on each worker is always a dominant strategy over using
incomplete estimators, i.e. U N,T 18 always preferable to U, n,N,B,7- Thisis shown by developments

of the difference Var(Un v 5.7(h)) — Var(UmN,TD(h)), while imposing NBT = nmTy/N. Indeed,
A :=Var (ﬁn,N7B,T(h>) — Var ((/J\YTL’N,TO) s

N-1/1 1 N 1 o? [1 1 o2 [1 1
=02 —— = - t—— |+ ==+ ——

1 nm T 1T nmTB NTB TB|N n TB|N m]|’
o N—-1 ] 1 N 1 1 1 N o [1 1 N o [1 1
=0 _— —_— _— | —= — — _— = — — —_— = - —

O | nmT B TB \ N2 nm TB|N n| TB|N m]|’

which shows that A > 0. Note that computing complete U-statistics also require fewer reparti-
tioning steps to evaluate the same number of pairs (i.e., Top < T)).

Optimization processes, such as stochastic gradient descent are often interested in small random
batches of data over many timesteps, and the dominance of Uy 1 over Uy n g1 supports the
hypothesis that redistributing the instances infrequently between timesteps is enough to correct
for the losses in precision incurred from redistributing the data.

Remark 6.7 (Extension to high-order U-statistics). The extension of our analysis to general
U-statistics is straightforward (see Clémengon et al. (2016) for a review of the relevant technical
tools). We stress the fact that the benefits of repartitioning are even stronger for higher-order
U-statistics (K > 2 and/or larger degrees) because higher-order components of the variance are
also affected.

6.3.4 Extension to Sampling With Replacement

While the use of prop-SWR is not very natural in a standard distributed setting, it is relevant in
cases where workers have access to joint database that they can efficiently subsample. We have
the following results for the variance of estimates based on prop-SWR.
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Theorem 6.8. If the data is distributed between workers with prop-SWR, and denoting ny =
(n/N,m/N), we have:

2 2 2
Var(Un,l(h»—“;;(2—2)#;;(z—;>+7j%[4_z(i+;>+$],

Var(Un x(h)) = Var(Un1 () + % (N—1) (1 _ i) (1 - 1) 7

m

Var(Tan.p(h)) = Var (Un (b)) + ﬁ [0® — Var(Uag1(h))].

Proof. First we derive the variance of Uy n(h). Since E[Un n(h)| Dy, Qm] = Un(h), the law of
total variance implies:

Var(Un n(h)) = Var(Un(h)) + E [Var (Un,n (R)|Dr, Om)]

— Var(Un(R)) + %]E [Var (Us, (h)|Dn, Q)] -

Introduce €(k) (resp. (1)) as the random variable that is equal to the number of times that
k has been sampled in cluster 1 for the D,, elements (resp. that ! has been sampled in cluster
1 for the Q,, elements). The random variable e(k) (resp. v(I)) follows a binomial distribution
with parameters (n/N,1/n) (resp. (m/N,1/m)). Note that the € and v are independent and that
S €e(k) =n/N and 3", v(I) = m/N. It follows that:

Uy () = U () = D)+~ 37 (Nelk) = 1) (1 (X,) ~ U (W)

which implies, using the results of Eq. (6.10),

N2g2 N252 N4g2
E [Var (Ur, (h)Dn, Q)] = = Var(e(1)) + 2 0

Var(e(1)v(1)). (6.13)
The mean and variance of a binomial distribution is known. Since €(1) and (1) are independent,

Var(e()) = 1 (1-1). Vo) = 1 (1- 1),

vttt - 2 (1 1) (1= 1)+ 2 (o= L 1]

Plugging Eq. (6.14) into Eq. (6.13) gives the result. Explicitly,

Var Unn() =2 (2= 1) + 2 (- 1)
6D 6

Now we derive the variance of [NJn,MB(h). Note that E[ﬁn’N7B|Dn, O, €,7] = Un,n(h), hence:

(6.14)

Var(T,x.5) = Var(Un v () + E [Var (O 5[0, Qi) |

= Var(Unn(h)) + %E [Var (UB,RI Dy, Orm, e,'y)] . (6.15)
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Conditioned upon D,,, O, €, v, the statistic U B,R, is an average of B independent experiments.
Introducing dy; as equal to 1 if the pair (k,!) is selected in worker 1 as the 1th pair of Up g, ,
and Ay its expected value, i.e. Ay := E[6;,] = N2e(k)y(l)/nm, it implies:

Var (Us.x, | Da, Qmr€7) = —Var (i i S 1h(X5s Z1) | Doy Qo €, ’y) (6.16)

From the definition of d;; we have 0y 0k, ;, = 0 as soon as k # ki or [ # [y, writing the
right-hand-side of Eq. (6.16) as the second order moment minus the squared means gives:

m n n m
Var (Up.z, | Dus Qi 67) = E Z Z wh?(Xn, Z)) — (Z 3 Apih(Xi, Z ) . (6.17)

Taking the expectation of Eq. (6.17) gives:

E[Var (02, 1D, Qo) | = 5 [BIR(X, 2)] ~ E[UZ,]],
= % [Var(h(X, Z)) — Var(Ug,)] - (6.18)
Plugging Eq. (6.18) into Eq. (6.15) gives:
Var(fjn,Nﬁ) = % + Var(Un n(h)) — %,

and we can conclude from preceding results, since Ug, is simply Uy, 1 with ng = (n/N,m/N). O

Theorem 6.9. If the data is distributed and repartitioned between workers with prop-SWR, we
have:

Var(Un n1(h)) = Var(Un(h)) + % [Var(Un () — Var(Uy(h))],

~ . 1 )
Var(Un.n.p.0(h) = Var (Onnr () + 557 [0 = Var(Ung 1 ()]
Proof. Since E [ﬁn ~N,7(h)| Dy, Qm] = Up(h) the law of total covariances followed by the fact

that, conditioned upon D,,, Q, the statistic Un7 ~,r(h) is an average of T independent random
variables, implies:

A 1
Var (T, (h)) = Var(Un(k) + E [Var (Un v () Dn, Q)]
The calculations above give the result. Explicitly,

Var (ﬁmN,T(h)) = Var(Un(h)) + % [Var(Un.x (b)) — Var(Un(h))].

We now derive the variance of [7,1’ N,B,T- Since
E [0n,N,B,T(h)|Dn, Om, 6,7] = ﬁn,N,T(h)7
the law of total covariance followed by the calculations above imply the result:
Var (ﬁmN,B,T(h)) = Var (ﬁmN,T(h)) +E [Var (ﬁn,N,B,T(hﬂDm O, €, ’Y)] )
= Var (T’J\n’N,T(h)> + %]E [Var (ﬁn,N,B(h”Dnv Qs 677)] ;

= Var (D r(1) + % [Var(h(X, Z)) — Var(Up,)].
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Figure 6.3: Theoretical variances as a function of the number of evaluated pairs for different
estimators under prop-SWR, with n = 100, 000, m = 200 and N = 100.

Fig. 6.3 gives a visual illustration of these results. First note that they are similar to those
obtained for prop-SWOR in Fig. 6.2. Yet, the right-hand side figure shows that U, n 5,7 can
have a significantly lower variance than Tj’ny N,T, for the same number of evaluated pairs. This
comes from the fact that ﬁm ~,B,7 works on bootstrap re-samples of the data than Un, N, and
hence better corrects for the loss of information due to sampling with replacement (at the cost of
more communication or disk reads). To stress this, we also represented Uy 1, i.e. the point that
gives the variance of a complete estimator based on one bootstrap re-sample of the data.

6.3.5 Extension to Simple SWOR

The analysis above assumes that repartitioning is done using prop-SWOR, which has the advantage
of exactly preserving the proportion of points from the two samples D,, and Q,, even in the event
of significant imbalance in their size. However, a naive implementation of prop-SWOR requires
some coordination between workers at each repartitioning step. To avoid exchanging many
messages, we propose that the workers agree at the beginning of the protocol on a numbering
of the workers, a numbering of the points in each sample, and a random seed to use in a
pseudorandom number generator. This allows the workers to implement prop-SWOR, without
any further coordination: at each repartitioning step, they independently draw the same two
random permutations over {1,...,n} and {1,...,m} using the common random seed and use
these permutations to assign each point to a single worker.

Of course, other repartitioning schemes can be used instead of prop-SWOR. A natural choice
is sampling without replacement (SWOR), which does not require any coordination between
workers. However, the partition sizes generated by SWOR are random. This is a concern in
the case of imbalanced samples, where the probability that a worker ¢ does not get any point
from the minority sample (and thus no pair to compute a local estimate) is non-negligible. For
these reasons, it is difficult to obtain exact and concise theoretical variances for the SWOR
case, but the results with SWOR should not deviate too much from the theoretical predictions
given in Theorem 6.5 and Theorem 6.6 obtained with prop-SWOR, as illustrated numerically
by the following example. Consider the kernel h(z,z) = z - z and random variables in R that
follow a normal law X ~ N (ux,ox) and Z ~ N (uz,0z). In that setting, note that o = p%0%,
03 = p% 0% and of = 0% 0%, which means that by tweaking the parameters px,uz,0x,0z, one
can obtain any possible value of o1, 02, 0¢.
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Figure 6.4: Empirical variances as a function of the number of evaluated pairs for SWOR, with
n = 100,000, m = 200 and N = 100, evaluated over 500 runs.

The results, shown in Fig. 6.4 are very similar to those obtained for prop-SWOR in Fig. 6.2. The
fact that SWOR has slightly lower variance is expected, since when no pairs are available the
default value is always 0. This makes the estimator give a stable prediction, but also makes it
biased.

Finally, we note that deterministic repartitioning schemes may be used in practice for simplicity.
For instance, the repartition method in Apache Spark relies on a deterministic shuffle which
preserves the size of the partitions.

6.4 Extensions to Stochastic Gradient Descent for ERM

The results of Section 6.3 can be extended to statistical learning in the empirical risk minimization
framework. In such problems, given a class of kernels H, one seeks the minimizer of (6.6) or
(6.8) depending on whether repartition is used.! Under appropriate complexity assumptions on
H (e.g., of finite VC dimension), excess risk bounds for such minimizers can be obtained by
combining our variance analysis of Section 6.3 with the control of maximal deviations based on
Bernstein-type concentration inequalities as done in Clémengon et al. (2008) and Clémengon
et al. (2016).

6.4.1 Gradient-based Empirical Minimization of U-statistics

In the setting of interest, the class of kernels to optimize over is indexed by a real-valued
parameter 6 € R? representing the model. Adapting the notations of Section 6.3, the kernel
h: X x Xy x R? — R then measures the performance of a model 6 € R? on a given pair, and is
assumed to be convex and smooth in §. Empirical Risk Minimization (ERM) aims at finding
0 € R? minimizing

n m
% Z Z (X, Z150) (6.19)

L Alternatively, for scalability purposes, one may instead work with their incomplete counterparts, namely (6.7)
and (6.9) respectively.
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The minimizer can be found by means of Gradient Descent (GD) techniques.? Starting at
iteration s = 1 from an initial model #; € R? and given a learning rate v > 0, GD consists in
iterating over the following update:

Oss1 = 05 — YVoUn(0s). (6.20)

Note that the gradient VoUy(0) is itself a U-statistic with kernel given by VyH, and its compu-
tation is very expensive in the large-scale setting. In this regime, Stochastic Gradient Descent
(SGD) is a natural alternative to GD which is known to provide a better trade-off between the
amount of computation and the performance of the resulting model (Bottou and Bousquet, 2007).
Following the discussion of Section 6.2.2, a natural idea to implement SGD is to replace the
gradient VoUy,(#) in (6.20) by an unbiased estimate given by an incomplete U-statistic. The work
of Papa et al. (2015) shows that SGD converges much faster than if the gradient is estimated
using a complete U-statistic based on subsamples with the same number of terms.

However, as in the case of estimation, the use of standard complete or incomplete U-statistics
turns out to be impractical in the distributed setting. Building upon the arguments of Section 6.3,
we propose a more suitable strategy.

6.4.2 Repartitioning for Stochastic Gradient Descent

The approach we propose is to alternate between SGD steps using within-partition pairs and
repartitioning the data across workers. We introduce a parameter n, € Z* corresponding to the
number of iterations of SGD between each redistribution of the data. For notational convenience,
we let r(s) := [s/n,] so that for any worker i, R:(S
of SGD.

Given a local batch size B, at each iteration s of SGD, we propose to adapt the strategy (6.9) by
having each worker ¢ compute a local gradient estimate using a set R g of B randomly sampled
r(s).

) denotes its data partition at iteration s > 1

pairs in its current local partition R;

~ 1
VQURR:(S)(HS):E D Voh(Xy, Zi365).

(k)ERS

This local estimate is then sent to the master node who averages all contributions, leading to the
following global gradient estimate:

VQU NB Z Vg BRI o (0s)- (6.21)

The master node then takes a gradient descent step as in (6.20) and broadcasts the updated
model 0511 to the workers.

Following our analysis in Section 6.3, repartitioning the data allows to reduce the variance of
the gradient estimates, which is known to greatly impact the convergence rate of SGD (see e.g.
Bubeck (2015), Theorem 6.3 therein). When n, = 400, data is never repartitioned and the
algorithm minimizes an average of local U-statistics, leading to suboptimal performance. On the
other hand, n, = 1 corresponds to repartitioning at each iteration of SGD, which minimizes the
variance but is very costly and makes SGD pointless. We expect the sweet spot to lie between
these two extremes: the dominance of U, n 1 over Uy v, B, established in Section 6.3.3, combined
with the common use of small batch size B in SGD, suggests that occasional redistributions are
sufficient to correct for the loss of information incurred by the partitioning of data. We illustrate
these trade-offs experimentally in the next section.

6.5 Numerical Results

In this section, we illustrate the importance of repartitioning for estimating and optimizing the
Area Under the ROC Curve (AUC) through a series of numerical experiments. The corresponding

2When H is nonsmooth in 6, a subgradient may be used instead of the gradient.
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Figure 6.5: Relative variance estimated over 5000 runs, n = 5000, m = 50, N = 10 and T = 4.
Results are divided by the true variance of Uy, expressed from (6.22) and Theorem 6.5.
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Figure 6.6: Learning dynamics for different repartition frequencies computed over 100 runs.

U-statistic is the two-sample version of the multipartite ranking VUS introduced in Example 6.2
(Section 6.2.1). The first experiment focuses on the estimation setting considered in Section 6.3.
The second experiment shows that redistributing the data across workers, as proposed in
Section 6.4, allows for more efficient mini-batch SGD. All experiments use prop-SWOR and are
conducted in a simulated environment.

Estimation experiment. We seek to illustrate the importance of redistribution for estimating
two-sample U-statistics with the concrete example of the AUC. The AUC is obtained by choosing
the kernel h(zx, z) = I{z < 2}, and is widely used as a performance measure in bipartite ranking
and binary classification with class imbalance. Recall that our results of Section 6.3.3 highlighted
the key role of the pairwise component of the variance o2 being large compared to the single-
sample components. In the case of the AUC, this happens when the data distributions are
such that the expected outcome using single-sample information is far from the truth, e.g. in
the presence of hard pairs. We illustrate this on simple discrete distributions for which we can
compute o3, o7 and o3 in closed form. Consider positive points X € {0, 2}, negative points
Ze{-1,+1} and P (X =2) =¢q, P(Z = +1) = p. It follows that:

2

o7 =p°q(1 —q), (6.22)

o5 = (1-¢)°p(1 —p), and 0 = p(1 — p + pq)(1 — q).



117 6.6. Conclusion

Assume that the scoring function has a small probability € to assign a low score to a positive
instance or a large score to a negative instance. In our formal setting, this translates into letting
p=1—¢q= ¢ for a small € > 0, which implies that 02/(c? + 03) = (1 —€)/(2¢) — © as € — 0.
We thus expect that as the true AUC U(h) = 1 — €2 gets closer to 1, repartitioning the dataset
becomes more critical to achieve good relative precision. This is confirmed numerically, as shown
in Fig. 6.5. Note that in practice, settings where the AUC is very close to 1 are very common as
they correspond to well-functioning systems, such as face recognition systems.

Learning experiment. We now turn to AUC optimization, which is the task of learning
a scoring function s : X — R that optimizes the VUS criterion (6.2) with KX = 2 in order
to discriminate between a negative and a positive class. We learn a linear scoring function
swp(z) = w'z + b, and optimize a continuous and convex surrogate of (6.2) based on the
hinge loss. The resulting loss function to minimize is a two-sample U-statistic with kernel
Guw.b(z, 2) = max(0, 1 + sy 4(2) — Sw,5(2)) indexed by the parameters (w, b) of the scoring function,
to which we add a small L2 regularization term of 0.05||wH§ with ||H§ the Euclidean norm.

We use the shuttle dataset, a classic dataset for anomaly detection.® It contains roughly 49,000
points in dimension 9, among which only 7% (approx. 3,500) are anomalies. A high accuracy is
expected for this dataset. To monitor the generalization performance, we keep 20% of the data
as our test set, corresponding to 700 points of the minority class and approx. 9,000 points of the
majority class. The test performance is measured with complete statistics over the 6.3 million
pairs. The training set consists of the remaining data points, which we distribute over N = 100
workers. This leads to approx. 10,200 pairs per worker. The gradient estimates are calculated
following (6.21) with batch size B = 100. We use an initial step size of 0.01 with a momentum of
0.9. As there are more than 100 million possible pairs in the training dataset, we monitor the
training loss and accuracy on a fixed subset of 4.5 x 10° randomly sampled pairs.

Fig. 6.6 shows the evolution of the continuous loss and the true AUC on the training and test
sets along the iteration for different values of n,., from n, = 1 (repartition at each iteration) to
n, = +00 (no repartition). The lines are the median at each iteration over 100 runs, and the
shaded area correspond to confidence intervals for the AUC and loss value of the testing dataset.
We can clearly see the benefits of repartition: without it, the median performance is significantly
lower and the variance across runs is very large. The results also show that occasional repartitions
(e.g., every 25 iterations) are sufficient to mitigate these issues significantly.

6.6 Conclusion

We tackled the distributed estimation of U-statistics. We showed that the pairwise nature of
U-statistics implies that naive distributed estimators may fail for some settings. We proposed new
unbiased estimators, based on the idea of repartitioning the data on the available machines. Using
analytical expressions, we showed that they are efficient in terms of variance, and compared their
computational cost to non-distributed and naive distributed estimators of U-statistics. Finally,
we proposed using the repartition procedure for minimizing U-statistics with gradient descent
in a distributed environment, and confirmed the relevance of our proposition with numerical
experiments.

We envision several further research questions on the topic of distributed tuplewise learning.
We would like to provide a rigorous convergence rate analysis of the general distributed SGD
algorithm introduced in Section 6.4. This is a challenging task because each series of iterations
executed between two repartition steps can be seen as optimizing a slightly different objective
function. It would also be interesting to investigate settings where the workers hold sensitive
data that they do not want to share in the clear due to privacy concerns.

Similarity ranking is the pairwise bipartite ranking view of similarity ranking, introduced and
studied in Chapter 5. Precisely, Chapter 5 gave guarantees for the pointwise ROC optimization
or the TREERANK procedure for similarity ranking. The techniques presented in this chapter
alleviate the extreme computational costs of estimating naively the quantities involved in similarity

3http://odds.cs.stonybrook.edu/shuttle-dataset/
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ranking. However, the propositions for scalability of this chapter do not address the challenges
specific to the optimization aspect of similarity ranking. The next chapter focuses on that
aspect by means of new procedures, toy examples and illustrations, and leaves aside the scaling
considerations as they were thoroughly addressed in this chapter.



Chapter 7

Practical Similarity Ranking

Summary: Chapter 5 introduced similarity ranking as the formulation of
similarity learning as a pairwise bipartite ranking problem. In similarity
ranking, the goal is that the larger the probability that two observations share
the same label, the larger the similarity measure between them. Chapter 5
provided analyses on the generalization of selected similarity ranking problems,
and Chapter 6 addressed the scalability issues associated to similarity learning.
To tackle practically the problems presented in Chapter 5, optimization
challenges remain. In this regard, this chapter first focuses on the pointwise
ROC optimization (pROC) problem. Precisely, we give an analytical solution
to empirical pROC for similarity ranking and for very specific class of functions.
Then, we propose a more general gradient-based approach to pROC for
bipartite ranking, that we illustrate on a toy example. The extension of
that approach to similarity ranking is straightforward. The remainder of the
chapter focuses on the TREERANK algorithm — see Chapter 5 for a formal
presentation — and first provides illustrations of it in the pairwise setting.
Then, we show that ranking forests, an ensemble method for TREERANK,
can correct for a misspecficiation of its proposed splitting region. Finally, we
discuss the limitations and extensions of our propositions, as well as the idea
of deriving practical approaches for similarity learning from our theory of
similarity ranking, a promising direction for future work.

7.1 Introduction

With the advent of deep neural networks for vision tasks, a new sub-branch of metric learning has
emerged, referred to as deep metric learning. Today, all modern facial recognition algorithms are
trained with deep metric learning algorithms, and some deep learning-based propositions exist
for other biometries (Minaee et al. (2019)). Deep metric learning can be roughly summarized
as the proposition of losses to learn a transformation of the data where natural distances have
a semantic meaning, unlike in the input space X'. Formally, deep metric learning consists in
learning an embedding e : X — R%. where R? is a low-dimensional space. Then, the distance
between the points x,z’ € X can be written as d(e(z),e(z’)), where d : R? x R? — R is some
simple distance function. In practice, the distance d is usually either the Euclidean distance or
the cosine similarity.

The common idea behind all of these losses is to separate classes/identities, but they differ by the
way they tackle the problem. In this section, we review several losses used in facial recognition,
and refer to Wang and Deng (2018) for more details.

The original deep metric learning approach to facial recognition used the classical softmax
cross-entropy (SCE). SCE is applied to a transformation of the embedding by a linear classifier
l:e(z) — WTe(x) where W € R and K is the number of classes in the training dataset.
Introduce a sample of n data points as D,, = {(z;,4:)}; < X x {1,..., K}, as well as the

notations e; := e(z;) € R and 1) := I(e(z;)) = (lgi), e ,lﬁ?) for any i € {1,...,n}. Then, the

119



Chapter 7. Practical Similarity Ranking 120

softmax cross-entropy on the observation x; writes:

ex (l (i)>

P { ty;

ESCE = 710g —— | - (71)
Zszl exp (li(;)>

Eq. (7.1) is simply the average of the cross-entropies between the softmax of the vectors ! () and
the one-hot-encoding (I{y; = 1},...,I{y; = K}) of y; for any i.

Separating the identities in the embedding space using the softmax cross-entropy makes intuitive
sense, but is not based on the idea of computing the distance of a pair of observations, i.e. the
end purpose of the trained system. Other losses, notably the contrastive loss and triplet loss, are
based on the idea of computing distances between embeddings. With the margin parameters
(e—,€4), the contrastive loss on the pair of observations (z;,y;), (z;,y;) writes:

Lecons = 2 j - Max (O, llei —ejlly — e+) + (1 —z;;) - max (O,e_ —le; — ej||2) , (7.2)

and z; ; = 2 I{y; = y;} — 1 for any (,5) € {1,...,n}%. The triplet loss writes is expressed on a
triplet ((z,v:), (z;,9;), (&, yx)) of observations that satisfies y; = y; and y; # yi. It writes:

Lasipir = max (0, les = 53 = flez = exl3 + ). (7.3)

In Eq. (7.3), the point (x;,y;) is named the anchor point and « is a margin parameter. Another
loss, called the center loss, seeks to align the embeddings of the observations of each class on a
center ¢y, for any k€ {1,..., K}. It is expressed as follows on a single point z;:

1 2
Ecenter = in’L — Cy; HQ (74)

Many other losses have been proposed in the literature, such as for example the vMF loss (Hasnat
et al., 2017), the ArcFace loss (Deng et al., 2019) or the AMS loss (Wang et al., 2018). We again
refer to Wang and Deng (2018) for an exhaustive presentation of those losses.

A recent experimental study, see Musgrave et al. (2020), of a non-negligible number of the losses
presented in the literature has recently shown that they perform comparably when one corrects
for all of the differences in models and implementations. This study suggests that most of the
improvements advertised by those papers are not due to the loss functions themselves, but to the
evolution of other practices in deep learning. Additionally, practitioners often consider summing
a selection of those losses in different proportions when training facial recognition systems, see e.g.
Parkhi et al. (2015). Finding the right combination requires performing extensive cross-validation
for models that take several weeks to train, which is extremely costly in terms of time and
computational resources. We refer to Strubell et al. (2019) for a discussion on the energy costs of
deep learning algorithms.

Although these losses rely on the sound intuitions that minimizing the intra-class variations
(Eq. (7.2), Eq. (7.3), Eq. (7.4)), maximizing the inter-class variations (Eq. (7.2) Eq. (7.3)) or
splitting the identities (Eq. (7.1)) will improve performance, none of them relates with the
evaluation of biometric systems. The evaluation of those systems essentially considers similarity
learning as a ranking problem, as explained in Chapter 5. Precisely, those systems are evaluated
using the ROC curve, which summarizes all attainable compromises between false positive rate
and true positive rate for all possible thresholds on the similarity. In this chapter, we provide
simple proof-of-concept toy experiments that draw on Chapter 5 to propose more relevant
approaches to deep metric learning for biometrics. Precisely, we propose approaches designed to
solve the similarity ranking problem, i.e. the problem of scoring on a product space (Chapter 5).

The chapter is organized as follows. Firstly, we discuss approaches to pointwise ROC optimization.
Precisely, we show that for simple similarities and specific data, one can exactly optimize for
specific points of the ROC curve. In a more general case, we then propose a gradient-based
algorithm that explicitly optimizes for a specific point of the ROC curve. Secondly, we discuss
approaches based on the TREERANK algorithm, a recursive splitting algorithm that optimizes for
ranking in the ROC sense, as proven in Chapter 5. In that context, we first illustrate the output
of the TREERANK algorithm for similarity ranking to provide intuition about its behavior. Then,
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we show that ranking forests — a bagging procedure for TREERANK — can correct for the flaws
of TREERANK. Precisely, our experiment shows that averaging ranking trees can yield a score
that is indiscernible from the optimal score, even when the splitting algorithm is ill-suited for the
problem. However, this setting is not covered by the analysis of Chapter 5, as we assumed that
the proposed family contains the optimal splitting rules. Additionally, our experiment shows that
an average of ranking trees can approximate a continuous output score, despite the fine-grained
but discrete output of TREERANK.

7.2 Practical Algorithms for Pointwise ROC Optimization

Many approaches to solve the ranking problem consist in finding a score function s : X — R
that maximizes the Area under the ROC curve (AUC), such as RankSVM in Joachims (2002),
RankBoost in Freund et al. (2003) or RankNet in Burges et al. (2005). We refer to Liu (2011)
(Part II) for a review of most practical approaches in ranking. However, the minimization of
the AUC considers that ordering correctly the instances in the middle of the ranked list is as
important as ordering those at the top, which conflicts with many applications that focus on the
first best results. Some authors have proposed functionals or algorithms that focus on the top of
the list, such as the p-norm push (Rudin, 2006) or the approach to optimize accuracy at the top
presented in Boyd et al. (2012). Additionally, Neyman-Pearson classification Scott and Nowak
(2005) concerns the optimization of the true positive rate under a constrained false positive rate.
We also refer to this problem as pointwise ROC optimization (pROC). A thorough theoretical
analysis of that problem was conducted in Chapter 5. Consider a sample of n data points as
Dy, = {(zi,yi)}-; € X x {1,..., K}. For any similarity function s : X x X — R*, introduce the
estimators:

. 1 ~ 1
Ry(s) = — Y s(wia;) My #y;},  and  Ri(s) = — > s(zi,z;) Ty = y;},
n— i N+ i
with ny =3}, I{y; = y;} and n_ := n(n —1)/2 — ny. The pROC problem then writes:
(pROC): max RI(s) subject to R (s)<a, (7.5)
SE

where S is a proposed family of similarity functions. While this problem encompasses very natural
settings, such as the optimization of a biometric system for a specific level of security, there
is a lack of practical approaches for it in the literature. Notable exceptions include Scott and
Nowak (2006) (Section 7.2) and Scott and Nowak (2005) (Section VI-B), which are both based
on partitioning the input space X. In that context, the objective of this section is to propose
new approaches to pointwise ROC optimization. It first presents a simple experiment that learns
linear similarities on simulated data, then proposes a generic gradient-descent based approach.

7.2.1 Exact Resolution for Bilinear Similarities

We illustrate on synthetic data that solving (7.5) for different values of « can optimize for
different regions of the ROC curve. Let X — R? and let S be the set of bilinear similarities with
norm-constrained matrices:

S = {SA Dz, 2') % (1+2"Az") | 1A% < 1},

where HAH; = Zijzl a3; is the Frobenius norm of A. Note that when the data is scaled, i.e.
|z]|e = 1 for all x € X, we have sa(z,2’) € [0,1] for all z,2’ € X and all s4 € S. Our simple
experiment features K = 3 classes, and observations belong to the sphere in R?. Following the
notations of Chapter 5, we denote by 6, ., the angle between the element x and the centroid c;

of class k and set for all k € {1,2,3}:

T 1
Fr(x) oc T {Gw,ck < Z} and DE = 3
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Figure 7.1: Solving pointwise ROC optimization for a toy dataset with a bilinear similarity.

as well as ¢; := (cos(m/3),sin(7/3),0), ca := ez and c3 := eg, with (ey, ez, e3) the vectors of the
standard basis of R?. See Figure 7.1(a) for a graphical representation of the data. With the
proposed family S, Eq. (7.5) writes:
1
max — Hyz=y *SA .'1,'7;7-'15'),
o S =) sa i
1
such that — Z [{y; # y;} - sa (vi,7;) <o and ||A||% < 1.
n

<y

Introduce the matrices N, P € R4*¢, defined as:

1
pP= 5 2 I{y; = y;}- (xlij +xjxiT) ,
Pt <ici<n
1
N = o Z I{y; # y;}- (:L'ZIJT +xjxj) .
1<i<j<n

With 8 = 2a — 1, one can further write Eq. (7.5) as:
n}gn —(P,A) st. (N,A)<p and (A /A)<]1.

The solutions of the problem above can be expressed in closed form using Lagrangian duality. In
particular, when the constraints are saturated, the solution s4, is an increasing transformation
of s4, with A, = P — Ay N, where A, is a positive Lagrange multiplier that decreases in a. By
decreasing «, we trade-off the information contained in the positive pairs (a large, A, close to
zero), for that in the negative pairs (« small, A, large). Changing « results in optimizing for
different areas of the ROC curve, see Figure 7.1(b).

7.2.2 A Gradient-descent Approach for General Similarities

In this section, we propose an approach to learn a score function that solves pointwise ROC
optimization by gradient descent in the case of bipartite ranking. Then, we discuss its extension to
similarity ranking. Bipartite ranking considers a sample D,, = {(z;,v:)}7.; < X x {—1,+1} and
seeks to learn a score function s : X — R, that ranks positive elements {x; | y; = +1,1 < i < n}
above negative elements {x; | y; = —1,1 <i < n}.

We consider the resolution of Eq. (7.5) with a linear frontier on a simple 2-dimensional example.
In our example, an obvious solution always exists, but is very different when « varies in (0, 1).
To achieve this result, we built our sample {(z;, y;)}_; by sampling n i.i.d. copies of a random
pair (X,Y) € X x {—1,+1}. The r.v. X has the distribution F' on [0,1]* and the posterior
probability n(z) := P{Y = +1 | X = x}. They satisfy, for any x € X such that x = (z1,22)":

F(z) = (4/m) - T{x? + 22 < 1,0 < 21, 0 < 2},
n(z) = (2/7) - arctan(xs /1),
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We call this distribution the quarter-circle distribution. We provide a representative sample in
Fig. 7.2.

Denote by H and G respectively the distributions of the conditional random variables X|Y = —1
and X|Y = +1. Consider the region Ry = {z € [0,1]? | arctan(za/x2) < 6}. Then, simple
calculations give:

G(Rg)—]P’(XeRg|Y—+1)—i(9—92>,

7r
462
H(Rg) =P(XeRy|Y =~1) = —.
™
Hence, the optimal rejection region R} for pointwise ROC optimization at level o simply satisfies
RY = {z|0, < +/ar/2}, and we have:

G(RY)=P{X eRl|Y = +1} = 2y/a — qa,
HR*) =P{XeR*|Y = —1} = .

Given a region defined by a linear classifier, the oriented distance to the separator plane of the
region defines a linear score function. The oriented distance to the region is the distance to the
boundary of the region, with a negative sign if the point belongs to the region and a positive sign
otherwise. We provide a visualization of an example sample with the optimal rejection regions in
Fig. 7.2. Fig. 7.3 shows the ROC curves of the score function associated to the optimal regions.
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With the parameterized logistic function o : t — 1/(1 + exp(—At), we can define relaxed versions
of the true positive rate and false positive rate for the linear score function sz — w'z as,

respectively:

~ 1 ~ 1
G(w,b) := — Z ox (w'z; +b) and H(w,b) :== — Z ox (w'z; +b).
" yioh " yvi=4
Drawing inspiration from the excess error for minimum volume set estimation of Scott and Nowak

(2006), we propose the following optimization program, with (z); = max(0, z):

max G(R* f@w,b> +(ﬁw,b ,a) s.t. w7+ b < 1.
o (GRY) = Glwb) + (H(w,b)~a) ol (7.6)
For the toy dataset, we use a standard gradient descent approach to minimize the objective
of Eq. (7.6), combined with regular projections on the unit ball to satisfy the constraint. A
representative experimental result is summarized in Fig. 7.4.

Another approach to optimize for different locations on the ROC curve proposed using classification
with asymmetric costs (Bach et al., 2006), i.e. weighting differently errors on positive and negative
instances.
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Figure 7.4: (Left) Relaxation of the indicator used. (Middle) Dynamics of the gradient-based
learning process. (Right) Linear separation for the optimal and learned rejection zone.

An extension of those results could lay the foundations for differentiable losses for similarity
ranking, adapted to operational constraints that can be framed as pointwise ROC optimization.
Clearly, the sampling strategies described in Chapter 6 can directly contribute to the efficient
learning of such similarities. Another proposition of Chapter 5 is an approach to approximate
the optimal scoring function by recursive partitioning of the input space, named the TREERANK
algorithm, which is the subject of the next section.

7.3 Empirical Evaluation of TreeRank

The TREERANK algorithm, first introduced in Clémengon and Vayatis (2009), tackles bipartite
ranking by recursively splitting the input space. At each step, TREERANK solves classification
with asymmetric costs on a specific region of the input space, and with different weights.
TREERANK was first introduced with a general splitting method, referred to as LEAFRANK,
yet only implemented with coordinate splits or combinations of those. In this section, we first
discuss the extension of the TREERANK algorithm to learning similarities functions. Precisely,
we illustrate the output of TREERANK for similarity ranking, 1.E. with symmetric LEAFRANK,
on the product space X x X = R x R. Then, we show the capacities of averages of scores learned
with TREERANK, so-called “ranking forests”, to approximate smooth score functions despite
the discrete nature of each individual score. Additionally, our experiment demonstrates that
averaging random ranking trees can correct for a misspecification of the LEAFRANK algorithm.
Our analysis does not cover misspecified splitting families of sets, as it always assumes that
the optimal split belongs to the family. Finally, we underline that the flexibility of TREERANK
implies that LEAFRANK could use complex proposed regions, possibly learned using usual gradient
descent algorithms. In that view, TREERANK constitute a methodology for solving bipartite
ranking as a global problem, and considering variants of the original algorithm is a promising
route for future work.

7.3.1 Symmetric Proposal Regions

Following the recommendations of Chapter 5, we introduce a symmetric transformation of the
input space, i.e. any function f: X x X — Im(f) such that f(z,2') = f(2/,z). Then, a natural
way to extend the TREERANK algorithm to similarity functions, is to choose for LEAFRANK the
collection of regions C, such that:

C:={z,a' e X x X | f(x,a")e D}, _,

where D < P(Im(f)). The i-th element of the vector f(z,z') is written f;(z,2'). A first
proposition, is to consider the transformation:

flz, o) = (|x—x'|, 9:+:1:')T.
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Figure 7.5: Representation of TREERANK score function with different simple proposed regions.
The z-axis corresponds to z; while the y-axis corresponds to .

Introduce the collection Cgjag defined as follows:

Caiag = {z,z’ e X x X/afi(a:,x') > O'A}

where i € {1,...,D}, 0 € {—1,+1} and A € R. The collection Cqiag corresponds to the set of all
coordinate splits in the transformed input space. Another possible approach is to set:

faa) = (@va, o na)T,

where z v 2’ and x A x’ respectively stand for the element-wise maximum and minimum of z
and z’. We introduce the collection Cgq of regions in X x X" as follows:

Coq = {x,x’ e X x X/ (ofi(z,2") = 0A) ® (0 firp(z,2') < O'A)}

where i € {1,...,D}, 0 € {—1,+1}, A€ R and ® is the standard XOR.

We illustrate with Fig. 7.5 the results of the outcome of the TREERANK algorithm with either
one of these two proposed families, in a simple case where X = [0,1], F' =1 (F is the uniform
distribution), K = 2 and:

P{Y = 2|X = 2} = 0.6 - I{z > 0.5} + 0.2.

As shown in Fig. 7.5, the output of those decision functions is discrete, an undesirable property
in many applications. Furthermore, the nature of the algorithm implies that the output score is
very dependent on the first splits. This property may impair the performance of TREERANK
if the proposed family of splits is underspecified. An extension of TREERANK is the notion of
ranking forests, which addresses to some extent both of these issues.

7.3.2 Approaching Continuous Scores with Ranking Forests

Ranking forests is the extension by Clémengon et al. (2013) for the TREERANK algorithm of the
random forests proposed in Breiman (2001). The main idea of ranking forests is to aggregate the
scores of several runs of a slightly randomized TREERANK algorithm on a subset of the data, by
means of a ranking aggregation procedure as argued in Clémencon et al. (2013) or simply by
averaging each score function. While the output of a ranking forest is not continuous as well
in theory, averaging enough trees may produce a ranking rule that is hardly distinguishable
numerically from a continuous score function.

To illustrate the properties of ranking forests, we show that they can recover an optimal score
for the quarter-circle distribution presented above. We considered fitting each individual tree
on a randomly selected subsample of 500 elements of a training set of n = 4,000 points. Final
performance is evaluated on an independently generated set of n = 4,000 points as well. We
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learned in total 30 full binary trees, each of depth 4. Each LEAFRANK algorithm was composed
of a full binary tree of recursive coordinate splits and depth 3. The aggregation of the scores was
their simple average. Results are summarized in Fig. 7.7 and show that the ROC of our model is
indistinguishable from the known optimal ROC on the test set. Additionally, Fig. 7.6 shows that
our output score is hardly distinguishable from a continuous function on the square [0, 1]2.
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Figure 7.6: Value of the score learned Figure 7.7: ROC curve of the score
with a ranking forest on the [0,1]? learned with a ranking forest compared
space. with the known optimal score.

The take-home message from this example is: even though the proposed family of the LEAFRANK
procedure is misspecified for our distribution, which breaks down the mathematical analysis
of TREERANK, we can retrieve the optimal solution by averaging biased solutions. While this
example is conclusive on our simple example, we can doubt its straightforward application to
learning in high-dimensional spaces and/or large samples, due to its computational complexity
and/or potential inaccuracy.

In that regard, more complicated splitting methods could be chosen, such as a linear decision
function. In that example, LEAFRANK could consists in fitting an asymmetrically weighted
SVM. Another approach would be learning a split of the input space using a gradient-based
approach. To obtain a continous output, future work could consider smoothing the output score
of TREERANK.

7.4 Conclusion

This chapter first proposed simple illustrations of optimization procedures for the pointwise ROC
optimization problem presented in Chapter 5, on naive but explanatory toy examples. While
the generality of those approaches is yet to prove, our examples suggest possible solutions to a
problem that is rarely addressed practically in the literature, apart from few notable examples
that are based on recursive partitioning. The chapter then illustrated the extension of the
TREERANK algorithm to learning similarity functions instead of score functions, presented
formally in Chapter 5. That approach is theoretically justified, and specifically tackles solving
similarity ranking — i.e. similarity learning viewed as ranking on a product space, presented
in Chapter 5 — but we address its limitations in practical scenarios. Those limitations can be
alleviated with for example ranking forests.

In general, this chapter is more prospective than the others and proposes to address the opti-
mization challenges induced by Chapter 5. As such, it initiates a dialogue between the broad
statistical ranking literature of the second part of the 2000s and the rapidly expanding deep
metric learning literature. It is motivated by the systematic evaluation of biometric systems with
tools designed for ranking, as well as the recent rapid increase of propositions for deep metric
learning that are backed solely by empirical results. In that regard, it is a promising direction for
future work.
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The recent improvements in similarity learning due to deep neural networks have fostered the
adoption of biometric technologies, and in particular that of facial recognition. In that regard,
while most of the early concerns focused on the privacy risks induced by the technology, recent
research and news outlets insisted on the risks induced by its lack of reliability. The subject of
the next part (Part IIT) of the thesis is to propose machine learning techniques to address those
risks.

Precisely, we first propose a method to solve the label ranking problem with classification data
(Chapter 8), which stands as a principled approach to the specific identification problem of
recovering most likely suspects. Secondly, Chapter 9 addresses the issue of representativeness of a
statistical population, a recurring topic in biometrics, using a reweighting scheme. Finally, while
reweighting corrects some form of bias due to representation, other type of bias are integrated
in the ground truth data, and can only be corrected with stronger explicit constraints on the
learning procedure. In that regard, Chapter 10 proposes theoretical analyses and techniques,
that address balancing predictive performance and flexible user-defined fairness criteria.
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Chapter 8

Ranking the Most Likely Labels

Summary: In multiclass classification, the goal is to learn a classification
rule g : R? — ), that accurately maps the random variable X € R? to the
label Y e ¥ = {1, ..., K}. In a wide variety of situations, the task targeted
may be more ambitious, and consists in sorting all the possible label values y
that may be assigned to X by decreasing order of the posterior probability
ny(X) = P{Y = y | X}. This chapter is devoted to the analysis of this
statistical learning problem, referred to as label ranking here. While Part 11
of the thesis focuses on similarity ranking, a direct mathematization of the
1:1 biometric identification problem, label ranking corresponds to a different
operational setting in biometrics. Indeed, label ranking is the problem of
returning a list of most likely suspects. Formally, label ranking can be viewed
as a specific variant of ranking median regression (RMR). Specifically, rather
than observing a random permutation ¥ assigned to the input vector X and
drawn from a Bradley-Terry-Luce-Plackett model with conditional preference
vector (n1(X), ..., nxg (X)), the sole information available for training a label
ranking rule is the label Y ranked on top, namely ¥~!(1). Inspired by recent
results in RMR, we prove that under noise conditions, the One-Versus-One
(OVO) approach to classification yields, as a by-product, an optimal ranking
of the labels with large probability. Our theoretical analysis builds on top of
finite-bounds for binary classification (Chapter 2) and probabilistic models
for ranking (Chapter 4).

8.1 Introduction

In the standard formulation of the multiclass classification problem, (X,Y) is a random pair
defined on a probability space (2, F, P) with unknown joint probability distribution P, where
Y is a label valued in Y = {1, ..., K} with K > 3 and the r.v. X takes its values in a possibly
high-dimensional Euclidean space, say R? with ¢ > 1 and models some input information that is
expected to be useful to predict the output variable Y. The objective pursued is to build from
training data D,, = {(X1,Y1), ..., (X,,Y,)}, supposed to be independent copies of the generic
pair (X,Y), a (measurable) classifier g : R? — ) that nearly minimizes the misclassification
error:

L(g) :=P{Y # g(X)}. (8.1)
Let n(x) = (m(x), ..., nk(x)) be the vector of posterior probabilities: ng(z) =P{Y =k | X =
x}, for x e R? and k € {1, ..., K}. For simplicity, we assume here that the distribution of the

r.v. n(X) is continuous, so that the 1, (X)’s are pairwise distinct with probability one, i.e. for all
(k, 1) e {1,..., K} with k <, then P{n,(X) = m(X)} = 0. It is well-known that the minimum
risk is attained by the Bayes classifier

g*(x) = argmax n(z),
ke{l, ..., K}

131
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and is equal to

* *
L*=L(g*)=1—-E [1I<r}€aungnk(X)] .
As the distribution P is unknown, a classifier must be built from the training dataset and from
the perspective of statistical learning theory, the Empirical Risk Minimization (ERM) paradigm
encourages us to replace the risk (8.1) by a statistical estimate En(g), typically the empirical
version (1/n) > | I{Y; # g(X;)} denoting by I{£} the indicator function of any event &£, and
consider solutions g,, of the optimization problem

min L, (g), (8.2)
9€g

where the infimum is taken over a class G of classifier candidates, with controlled complexity (e.g.
of finite VC dimension), though supposed rich enough to yield a small bias error inf eg L(g) — L*,
i.e. to include a reasonable approximation of the Bayes classifier g*. Theoretical results assessing
the statistical performance of empirical risk minimizers are very well documented in the literature,
see e.g. Devroye et al. (1996), and a wide collection of algorithmic approaches has been designed
in order to solve possibly smoothed/convexified and/or penalized versions of the minimization
problem (8.2).

Denoting by & i the symmetric group of order K (i.e. the group of permutations of {1, ..., K}),
another natural statistical learning goal in this setup, halfway between multiclass classification and
estimation of the posterior probability function n(z) and referred to as label ranking throughout
the chapter, is to learn, from the training data D,,, a ranking rule s, i.e. a measurable mapping
s:R? — S, such that the permutation s(X) sorts, with high probability’, all possible label
values k in ) by decreasing order of the posterior probability 7 (X), that is to say in the same
order as the permutation o% defined by: Yo € RY,

7]0?—1(1)(1') > ?70:5—1(2) ((E) > 00> nU;k—l(K)(LL'), (83)

and c% is a random permutation that satisfies P{c% = o} = P{X € {x e R? | ¢} = o}} for any
0 € Gk. This label ranking corresponds to a specific operational setting in biometrics, but not
to the similarity ranking setting studied in Part II, since label ranking can be seen as returning a
list of most likely suspects. Equipped with this notation, observe that g*(x) = o*~1(1) for all
x € R%. Given a loss function d : S x G — R, (i.e. a symmetric measurable mapping s.t.
d(o, o) =0 for all o € &), one may formulate label ranking as the problem of finding a ranking
rule s which minimizes the ranking risk:

R(s) = E[d(s(X),0%)] (8.4)

Except when K = 2 and in the case when the loss function d considered only measures the
capacity of the ranking rule to recover the label that is ranked first, that is to say when
d(o, 0') =T{o71(1) # o’71(1)} (in this case, R(s) = P{g*(X) # s(X)~1(1)}), the nature of the
label ranking problem significantly differs from that of multiclass classification.

There is no natural empirical counterpart of the risk (8.4) based on the observations D,,, which
makes the ERM strategy inapplicable in a straightforward fashion. It is the goal of the present
chapter to show that the label ranking problem can be solved, under appropriate noise conditions,
by means of the One-Versus-One (OVO) approach to multiclass classification. The learning
strategy proposed is directly inspired from recent advances in consensus ranking and ranking
median regression (RMR), see Korba et al. (2017) and Clémencon et al. (2018). an output r.v. X
that takes its values in the group G (in recommending systems, ¥ may represent the preferences
over a set of items indexed by k € {1, ..., K} of a given user, whose profile is described by the
features X). The goal is to find a ranking rule s that minimizes E[d(s(X), X)], that is to say,
for any x € R, a consensus/median ranking s(x) € G related to the conditional distribution of
Y given X = z w.r.t. the metric d(., .).

In this chapter, by means of a coupling technique, we show that the label ranking problem stated
above can be viewed as a variant of RMR where the output ranking is very partially observed in
the training stage, through the label ranked first solely. While previous authors (Korba et al.
(2018) or Brinker and Hiillermeier (2019)) tackled RMR with partial information, they do not
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feature the strong theoretical guarantees that we provide. Based on this analogy, the main
result of the chapter shows that the OVO method permits to recover the optimal label ranking
with high probability, provided that noise conditions are fulfilled for all binary classification
subproblems. Incidentally, the analysis carried out provides statistical guarantees in the form of
(possibly fast) learning rate bounds for the OVO approach to multiclass classification under the
hypotheses stipulated. Our contribution focuses on label ranking, but builds on top of both the
OVO approach and recent literature in RMR. Finally, various numerical experiments corroborate
empirically the theoretical results established in this chapter.

The chapter is organized as follows. In section 8.2, the OVO methodology for multiclass
classification is recalled at length, together with recent results in RMR. The main results of the
chapter are stated in section 8.3: principally, a coupling result connecting label ranking to RMR,
and statistical guarantees for the OVO approach to label ranking in the form of nonasymptotic
probability bounds. Numerical experiments are displayed in section 8.4, while some concluding
remarks are collected in section 8.5.

8.2 Preliminaries

To begin with, we recall the OVO approach for defining a multiclass classifier from binary
classifiers. Basic hypotheses and results related to Ranking Median Regression (RMR) are next
briefly described.

8.2.1 From Binary to Multiclass Classification

A classifier g is entirely characterized by the collection of subsets of the feature space R?:
(Sg(1), ..., Sg(K)), where Sy(k) = {r e R?: g(x) =k} for ke {1, ..., K}. Observe that the
Si’s are pairwise disjoint and their union is equal to R?. Hence, they form a partition of RY,
except that it may happen that a certain subset Si(g) is empty, i.e. a certain label k is never
predicted by g.

The OVO approach. Partitioning the feature space R? in more than two subsets may lead to
practical difficulties and certain learning algorithms such as Support Vector Machines (SVM’s)
are originally tailored to the binary situation (i.e. to the case K = 2). In this case, a natural way
to extend such algorithms is the ’One-Versus-One’ approach to multi-class classification (Hastie
and Tibshirani, 1997; Moreira and Mayoraz, 1998; Allwein et al., 2000; Fiirnkranz, 2002; Wu
et al., 2004). It consists in running the binary classification algorithm K (K — 1)/2 times once for
each binary subproblem. For any 1 < k <[ < K, the binary subproblem of k against [ is based
on the fraction of the training data with labels in {k, {} only:

Dy ={(X:;,Y)) | Yie{k1},i=1, ..., n},

and the binary classification algorithm outputs a classification rule gy ; : R? — {—1, +1} with
risk:

Ly i(gr,1) = P{Yry # gri(X) | Y € {k,1}},

as small as possible, where Yj,; = I{Y = I} — I{Y = k}. The OVO approach combines, for any
possible input value x € RY, the binary predictions g ;(x) to produce a multi-class classifier
g:R?— {1, ..., K} with minimum risk R(g). A possible fashion of combining the results of
the K (K —1)/2 ’duels’ is to take as predicted label which has won the largest number of duels
(and stipulate a rule for breaking possible ties). The rationale behind this OVO approach lies in
the fact that:

g*(z) = argmax N (z), (8.5)
ke{1, ..., K}
where, for all (k,z) € {1, ..., K} x R?, N}(z) denotes the number of duels won by label k& with

optimal/Bayes classifiers for all binary subproblems, namely:

NiE(x) = Y Hot(a) = +1} + Y Hgiky(2) = —1},

i<k k<l
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where gF (x) = 2I{n,(x)/(gm(z) + m(x)) > 1/2} — 1 is the minimizer of the risk L;,, for
lm s

I < m. The proof is straightforward. Indeed, it suffices to observe that, for all i € {1, ..., K},
N*, W = K —i.

Remark 8.1. (ONE-VERSUS-ALL) An alternative to the OVO approach in order to reduce
multiclass classification to binary subproblems and apply the SVM methodology consists in
comparing each class to all of the others in K two-class duels. A test point is classified as follows:
the signed distances from each of the K separating hyperplanes are computed, the winner being
simply the class corresponding to the largest signed distance. However, other rules have been
proposed in Vapnik (1998) and in Weston and Watkins (1999).

Label Ranking. As underlined in the Introduction section, rather than learning to predict
the most likely label given X, it may also be desirable to rank all possible labels according to
their conditional likelihood. The goal is then to recover the permutation o% defined through
(8.3). Practically, this boils down to building a predictive rule s(z) from the training data
(X1,Y1), ..., (X,,Y,) that maps R? to & x and minimizes the ranking risk (8.4), where d(., .) is
an appropriate loss function defined on S i x S . For instance, one may consider I{o # ¢’} or the
Hamming distance Zi;l I{o(k) # o'(k)} to measure the dissimilarity between two permutations
o and ¢’ in 6. Classic metrics on Sk (see Deza and Huang (1998)) also provide natural choices
for the loss function, including:

e the Kendall 7 distance: V(o, o’) € &%,

dr(0, 0') = Y (o (i) —a(j)) - (o'()) — o' (5)) < O},

1<j

e the Spearman footrule: V(o, ') € 6%,

As shall be explained below, the label ranking problem can be viewed as a variant of the standard
ranking median regression problem.

8.2.2 Ranking Median Regression

This problem of minimizing (8.4) shares some similarity with that referred to as ranking median
regression in Clémencon et al. (2018), also called label ranking sometimes, see e.g. Tsoumakas
et al. (2009) and Vembu and Géartner (2010). In this supervised learning problem, the output
associated with the input variable X is a random vector ¥ taking its values in S (expressing
the preferences on a set of items indexed by k € {1, ..., K} of a user with a profile characterized
by X drawn at random in a certain statistical population) and the goal pursued is to learn
from independent copies (X1,%1), ..., (Xn,2,) of the pair (X, ) a (measurable) ranking rule
s : R? — G that nearly minimizes:

R(s) := E[d(Z, s(X))]. (3.6)

The name ranking median regression arises from the fact that any rule mapping X to a median
of ¥’s conditional distribution given X w.r.t. the metric/loss d (refer to Korba et al. (2017) for
a statistical learning formulation of the consensus/median ranking problem) is a minimizer of
(8.6), see Proposition 5 in Clémengon et al. (2018). In certain situations, the minimizer of (8.6) is
unique and a closed analytic form can be given for the latter, based on the pairwise probabilities:
pij(@) =P{E({) <2() | X =z} :=1—pj;i(r)for 1 <i<j <K and z e R
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Assumption 8.2. For all x € RY, we have: V(i,k,1) € {1, ..., K}*, p; ;j(z) # 1/2 and

pij(x) >1/2 and pj p(x) > 1/2 = p; p(z) > 1/2. (8.7)

Indeed, when choosing the Kendall 7 distance d, as loss function, it has been shown that, under
Assumption 8.2, referred to as strict stochastic transitivity, the minimizer of (8.6) is almost-surely

unique and given by: Vk € {1, ..., K}, with probability one:
sk (k) =1+ > Ipea(X) < 1/2}. (8.8)
1#k

Remark 8.3. (ConDITIONAL BTLP MODEL) A Bradley-Terry-Luce-Plackett model for ¥’s
conditional distribution given X, Ps|x, assumes the existence of a hidden preference vector
w(X) = (wi(X), ..., wg(X)), where wi(X) > 0 is interpreted as a preference score for item k
of a user with profile X, see e.g. Bradley and Terry (1952), Luce (1959) or Plackett (1975). The
conditional distribution of S=1 given X can be defined sequentially as follows: X=1(1) is distributed
according to a multinomial distribution of size 1 with support S1 = {1, ..., K} and parameters
wi(X)/ X, wi(X) and, for k> 1, S71(k) is distributed according to a multinomial distribution of
size 1 with support S, = SI\{X~(1), ..., 7' (k — 1)} with parameters wi(X)/ Y cg, Wm(X),
1 € Si. The conditional pairwise probabilities are given by py (X)) = wi(X)/(wi(X) + wi (X))
and one may easily check that Assumption 8.2 is fulfilled as soon as the wi(X)’s are pairwise
distinct with probability one. In this case, s*(X) is the permutation that sorts the wi(X)’s in
decreasing order.

In Clémencon et al. (2018), certain situations where empirical risk minimizers over classes of
ranking rules fulfilling appropriate complexity assumptions can be proved to achieve fast learning
rates (i.e. faster than O(1/4/n)) have been investigated. More precisely, denoting by essinf Z the
essential infimum of any real valued r.v.Z, the following 'noise condition’ related to conditional
pairwise probabilities was considered.

Assumption 8.4. The pairwise probabilities p; ; satisfy:

H = essinfmin |p; ;(X) —1/2| > 0. (8.9)
i<j

Precisely, it is shown in Clémengon et al. (2018) (see Proposition 7 therein) that, under Assump-
tions 8.2-8.4, minimizers of the empirical version of (8.6) over a VC-major class of ranking rules
with the Kendall 7 distance as loss function achieves a learning rate bound of order 1/n (without
the impact of model bias). Since Px{s(X) # s%} < (1/H) x (R(s) — R(s*)) (¢f Eq. (13) in
Clémencon et al. (2018)), a bound for the probability that the empirical risk minimizer differs
from the optimal ranking rule at a random point X can be immediately derived.

8.3 Label Ranking

We now describe at length the connection between label ranking and RMR and state the main
results of the chapter.

8.3.1 Label Ranking as RMR

The major difference of the multi-class classification context with label ranking lies in the fact
that only the partial information U}“{l(l) is observable in the presence of noise — under the
form of the random label Y assigned to X (o% (1) is the mode of the conditional distribution
of Y given X) — in order to mimic the optimal rule c%.

Lemma 8.5. Let (X,Y) be a random pair on the probability space (0, F.P). One may extend the
sample space so as to build a random variable ¥ that takes its values in S and whose conditional
distribution given X is a BTLP model with preference vector n(X) = (m(X), ..., nx(X)) such
that

Y = X7Y(1) with probability one. (8.10)



Chapter 8. Ranking the Most Likely Labels 136

Proof. Our proof shows that we can define a random permutation ¥ € G with the desired
properties. To begin with, define ¥71(1) as Y. Next, given X and L71(1) = Y, draw X’

as a BTLP model on the set Z = {1, ..., K}\{X71(1)} with preference parameters n;(X),
keZ. Forallre{l, ..., K—1}, set X7}r +1) = ¥71(r) and invert the permutation
(271(1), ..., ¥7Y(K)) to get the desired random permutation . O

The noteworthy fact that the probabilities related to the optimal pairwise comparisons P{ g; (X)) =
+1|Y e {k, I}} =ne(X)/(n(X) + m (X)) are given by a BTLP model has been pointed out in
Hastie and Tibshirani (1997). With the notations introduced in Lemma 8.5, we have in addition

i1 (X) :

P{X(k) <2() | X},
= 0 (X)/ (e (X) + m(X)).

Eq. (8.10) can be interpreted as follows: the label ranking problem as defined in subsection 8.2.1
can be viewed as a specific RMR problem under strict stochastic transitivity (i.e. Assumption
8.2 is always fulfilled since the 7 (X) are a.s. pairwise distinct) with incomplete observations

(X1, 27MD), -, (X, 271(1), (8.11)

since every observation (X;, X7 (1)) in Eq. (8.11) only contains the top element ¥;'(1) of the
random permutation ¥, while all of ¥ is available in RMR.

Due to the incomplete character of the training data, one cannot recover the optimal ranking rule
0% by minimizing a statistical version of (8.6) of course. As an alternative, one may attempt to
build directly an empirical version of o% based on the explicit form (8.8), which only involves
pairwise comparisons, in a similar manner as in Korba et al. (2017) for consensus ranking. Indeed,
in the specific RMR problem under study, Eq. (8.8) becomes

ok (k) =1+ Y T{gi,(X) = 1}, (8.12)
l#k
for all k € {1, ..., K}. The OVO procedure precisely permits to construct such an empirical

version, by replacing the optimal classifier g;f, in Eq. (8.12) by a minimizer of the empirical
classification error. As shall be shown by the subsequent analysis, in spite of the very partial
nature of the statistical information at disposal, the OVO approach permits to recover the optimal
RMR rule o% with high probability provided that (X, ¥) fulfills (a possibly weakened version
of) Assumption 8.4, combined with classic complexity conditions.

Remark 8.6. (ON THE NOISE CONDITION) Attention should be paid to the fact that, when
applied to the random pair (X,Y) defined in Lemma 8.5, Assumption 8.4 simply means that
the classic Massart’s noise condition is fulfilled for every binary classification subproblem, see
Massart and Nédélec (2006).

8.3.2 The OVO Approach to Label Ranking

Let G be a class of decision rules g : R? — {—1, +1}. As stated in subsection 8.2.1, the OVO
approach to multiclass classification is implemented as follows. For all k < [, compute a minimizer
gk, of the empirical risk:

1

L = I{g(X;) # Yii}, 8.13
@)= P HgX) # Vi) (5.9
it Yie{k, 1}
over the class G, with Yy, ;, = I{Y; =1} —I{Y; = k} for i € {1, ..., n} and the convention that

0/0 = 0. We set g;x, = —gi, for k <1 by convention. Equipped with these (12() classifiers, for any

test (é.e. input and unlabeled) random variable X, the g ;(X)’s define a complete directed graph
Gx with the K labels as vertices: Yk <[, ] —»x k if G, ;(X) = +1 and k —x [ otherwise. The
analysis carried out in the next subsection shows that under appropriate noise conditions, with
large probability, the random graph Gx is acyclic, meaning that the complete binary relation
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I —>x k is transitive (i.e. | > k and k —>x m = | —x m), in other words that the scoring
function:

S(X) (k) := 14 Y T{Gea(X) = 1}, (8.14)
k#l
= 1+Z]I{k—>x I}, forke{l, ..., K},
k#l

defines a permutation, which, in addition, coincides with ¢%, ¢f Eq. (8.12). The equivalence
between the transitivity of —x, the acyclicity of Gx and the membership of §(X) in & is
straightforward, but we refer to Theorem 5’s proof of Eq. (9) in Korba et al. (2017) for more
details.

Remark 8.7. The quantity (8.14) can be related to the Copeland score, see Copeland (1951): the
score 8(X)(k) of label k being equal to 1 plus the number of duels it has lost, while its Copeland
score Cx (k) is its number of victories minus its number of defeats, so that

S(X)()=(K+1-Cx(.)/2.

OVO APPROACH TO LABEL RANKING

Inputs. Class G of classifier candidates. Training classification

dataset D, = {(X1,Y1), ..., (Xn,Yn)}. Query point x € RY.
1. (BINARY CLASSIFIERS.) For k < [, based on Dy, = {(X;,Y:): Yi €
{k, 1}, i =1, ..., n}, compute the ERM solution to the binary

classification problem:

gk,l = arg min ik,l(g)-
9€g

2. (ScorING.) Compute the predictions gi (x) and the score for the
query point x:

@) (k) =1+ Y Hgeu(w) = —1}.

I#k

Output. Break arbitrarily possible ties in order to get a prediction
0, in 6k at x from 5(z).

Figure 8.1: Pseudo-code for ’OVO label ranking’

While the rest of the paper focuses on events where G x is transitive, the end of this subsection
present practical approaches in the opposite case. If Gx is not transitive, or equivalently when
5(X) ¢ 6k, one may build a ranking 6x from the scoring function (8.14) by breaking ties in an
arbitrary fashion, as proposed below for simplicity. Alternatives could be considered of course.
The issue of building a ranking/permutation of the labels in {1, ..., K} from (8.14) can be
connected with the feedback set problem for directed graphs, see e.g. Battista et al. (1998): for a
directed graph, a minimal feedback arcset is a set of edges of smallest cardinality such that a
directed acyclic graph is obtained when reversing the edges in it. We refer to e.g. Festa et al.
(1999) for algorithms.

8.3.3 Statistical Guarantees for Label Ranking

It is the purpose of the subsequent analysis to show that, provided that the conditions listed
below are fulfilled, the ranking rule ¢% can be fully recovered with high probability through the
OVO approach previously described. We denote by F' the marginal distribution of the input
variable X, by Fj the conditional distribution of X given Y = k and set py = P{Y = k} for
ke{l, ..., K}

Assumption 8.8. There exists o € [0,1] and B > 0 such that: for all k <1 andt >0,
P{|2 - ne.(X) — 1| <t} < BtTa.
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Assumption 8.9. The class G is of finite VC dimension V < +00.

Assumption 8.10. There exists a constant € > 0, s.t. for allk #1 in {1, ..., K} and x € R,
ne(z) + mi(z) > e.

Assumption 8.8 means that Assumption 8.4 is satisfied by the random pair (X, Y) defined in
Lemma 8.5 in the case a = 1 (notice incidentally that it is void when o = 0) and reduces to the
classic Mammen-Tsybakov noise condition in the binary case K = 2, see Mammen and Tsybakov
(1999). Under those assumptions, one can derive Lemma 8.11 below, which provides guarantees
for the (k,1) OVO classification problem.

Lemma 8.11. Suppose that Assumptions 8.8-8.10 are fulfilled. Let 1 < k <1< K. Then, for
all 5 € (0,1), we have Yn =1, w.p. = 1—-19:

Lua@nn) = 22 <2 (inf Luato) = L2, ) +7a(0), (3.15)

where, for alln = no(d,a, e, B, V) and ¢ € (0,1),
ra(8) = 2 (1/(nh)) ™= x [(6402v1ogn)ﬁ + (32 1og(2/5))ﬁ] :
where C' > 0 is an universal constant and h = €2729/(163).

Proof. The result is a slight variant of that proved in Boucheron et al. (2005) (pages 342-346). The
sole difference lies in the fact that fact that the empirical risk (and, consequently, its minimizer
as well) is built from a random number of training observations (i.e. those with labels in {k, [}).
Here, we detail the proof for completion.

The derivation of fast learning speeds for general classes of functions relies on a sensible use of
Talagrand’s inequality that exploits the upper bound on the variance of the loss provided by the
noise condition, combined with convergence bounds on Rademacher averages, see P. Bartlett and
Mendelson (2005).

To begin with, we define classes of functions that mirror the ones used by Boucheron et al. (2005).
Those are specifically introduced for the problem of associating elements of the sample to the
label k or I, with k < I, (k,1) € {1,..., K}? any pair of labels. Given a label y € ), it corresponds
to solving binary classification for ¢y ;(y) = I{y = k} —I{y = I} for all of the concerned instances,
i.e. those with labels k or . For each binary classifier g in G, we introduce the cost function ¢
and the proportion of concerned instances hy ;, such that, for all z,y € R? x {1,..., K},

cri(e,y) = Ug(x) # dri(y),y € {k, 1} and hia(y) := Ty € {k, 1}}.

We denote by F,; the set that contains the regrets of all functions g € G, formally:

Frep = {fea: (@,y) = Hy e {k 1} (crale,y) — i () # dra(y)}) g€ G}

Note that c;; has an implicit dependence on a classifier g and that Fj, ; has an implicit dependence
on G. With P as the expectation over X,Y and P, as the empirical measure, one can rewrite
the risk L ; and empirical risk Ly, ; as:

PCkl

Lk’l(g):Phk,l and  Ly(9g)

_ Pacgy
Pohi,

Unlike ¢y the empirical mean P,hy; does not depend on an element of g € G, thus minimizing
Ek,l is the same problem as minimizing P,c; ;. The rest of the proof consists in using Boucheron
et al. (2005) (section 5.3.5) to derive an upper bound of Pf, with f € Fj ;. Talagrand’s inequality
is useful because of an upper-bound on the variance of the elements in Fy ;.

Assumption 8.8 induces a control on the variance of the elements of F, ;. Bousquet et al. (2003)
(page 202) reviewed equivalent formulations of the noise assumption, in the case of binary
classification. One of those formulations is similar to the following equation:

P{g(X) # gi1(X)} < B(Lia(g) = L), (8.16)
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where 3 = (B17%)/(e(1 — a)!~*a®). The proof only differs slightly from that of (Bousquet et al.,
2003, page 202 therein), as it features implications of 8.10.

Set Bo = B(px + p1)®, Equation (8.16) implies, for any f € Fy,, that, with T'(f) = +/Bo - (Pf)/?:

Var(f) < P{g(X) # git /(X)} < B(Lralg) — LE )™ = Blow +p)™ - (P =T*(f).  (8.17)

The function T'(f) controls the variance of the elements in Fj;, and is used to reweights its
instances before applying Talagrand’s inequality.

The complexity of the proposed family of functions is controlled using the notion of Rademacher
average, presented in Definition 2.10 of Chapter 2 in a the restricted setting of classifiers. Let F
be a class of functions, its Rademacher average R, (F) is defined as:

n

Do (X, V).

i=1

1
R, (F) :=E,sup —
feF

Introduce Fj¥; as the star-hull of Fi,, i.e. Ff, = {af : a € [0,1], f € Fi}, we define two
functions that characterize the properties of the problem of interest, and are required to apply
Theorem 5.8 of Boucheron et al. (2005):

w(r) = sup  T(f) and Y(r) =ER,{f e Fi, - T(f) <r}. (8.18)
feF¥ Pf<r

Finally Theorem 5.8 of Boucheron et al. (2005) implies that, for all § > 0, with r&(d) the solution

of:
[2log 2 16log 2
r = 4y(w(r)) + 2w(r) (:lg o 4 3(7)1g o (8.19)

we have that, for any k <, (k,1) € {1,...,K}? and any n € N* w.p. > 1 —,

HON
Pk + D

Lua@n) ~ L < 2 (100 Luale) ~ L2, ) +

Now, we can conclude by combining this result with properties of w and ¥, that originate from
the noise assumption and the control on the complexity of G, respectively. Assumption 8.9
states that the proposed class G is of VC-dimension V. Permanence properties of VC-classes of
functions, see van der Vaart and Wellner (1996) (section 2.6.5), imply that Fj; is also VC. It
follows from P. Bartlett and Mendelson (2005) that:

P(r) < Craf v log n,
n

where C' > 0 is an universal constant.

Plugging this result into Equation (8.19) gives:
2w(rg(0))

/ 2 1610g%
\F 2C\/V logn, + 210g5] -

Combining it with the definition of w in (8.18) and the control on the variance laid forth in (8.17)
yields:

rg(8) <

1) < [N 22 20

Vilegn +4/2log

(8.20)

2 16log 2
|+ g3
1) 3n

Equation (8.20) is a variational inequality, and an upper bound on the solution can be derived
directly from Zou et al. (2009) (Lemma 2). It writes:

r3(5)<max{<1?fo> [20\/Vlogn+\/2log 2/5)]% 3210:52/5)}
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2/(2-a)

Using the convexity of x — x , the right-hand side of the above inequality can be upper-

bounded, which leads to:

1
16 2-a - 11 32log(2/d
rE(d) <2 max{( nﬂo) [(4C2Vlogn) =y (21og(2/6))2—1a] , O;(L/)} (8.21)
Assumption 8.10 implies that (py + p;)~* < 1/e. Introducing r*(6) = (pr + p1) " 'rE (), Equation
(8.21) combined with the definition of By implies:

() < 2 - max { <£) o [(4C2V1og )% + (2log(2/5))ﬁ] : W} C(8.22)

3en

Introduce ng (6, o, €, B, V') as the lowest n such that the first term in the maximum in Equation
(8.22) dominates the second term, it satisfies:

l1—«a

nZ" [(4021/10g(no))ﬁ + (2log(2/5))ﬁ] > 32108(2/0)

——, (8.23)
3[168ex]2==
and so does any n = ng.

To conclude, we have proven that for any ¢ € (0,1), for any n = no(d, o, ¢, B, V), we have that
wp =1-—90,

Ly a(Gra) — Ly <2 (;Ielé Lii(g) - L?;l) +7%(6),
with

r*(8) = 2 (ﬂ) = [(402v1ogn)ﬁ +(2 1og(2/5))ﬁ] . (8.24)

O

The following result builds on top of Lemma 8.11 to provide nonasymptotic bounds for the
ranking risk Rp(cdx) of the OVO ranking rule in the case where the loss function is I{o # o'},
i.e. for the probability of error. Extension to any other loss function d(., .) is straightforward,
insofar as we obviously have d(0%, 0x) < max(y )ee2 d(0,0') x [{ox # 0%} with probability
one.

Theorem 8.12. Suppose that Assumptions 8.8-8.10 are fulfilled. Then, for all 6 € (0,1), we
have Vn = ng(0, a, €, B, V'), with probability (w.p.) at least 1 — 4:

Plox # % | Dy < { (5) ([2)) + X2 (1t Luato —L)} |

2 k<l

where X denotes a r.v. drawn from F, independent from the training data Dy, L}, = Li(g5 ),
B = B(«a, B) and with h := h(B,a,¢),

ra(6) = 2(1/(nh) 7% x [ (64C2V logn) 7% + (3210g(2/8)) 77 |.

Proof. Fix 6 €0,1 and let 1 < k < < K. Assumption 8.8 implies that the Mammen-Tsybakov
noise condition is fulfilled for the binary classification problem related to the pair (X,Y) given
that Y € {k, {}. When Assumptions 8.9-8.10 are also satisfied, a possibly fast rate bound for the
risk excess of the empirical risk minimizer gy ; can be established, as stated in Lemma 8.11.

Observe that the probabilities appearing in this proof are conditional probabilities given the
training sample D,, and, as a consequence, must be considered as random variables. However, to
simplify notations, we omit to write the conditioning w.r.t. D,, explicitly. Eq. (2.11) in Chapter 2
gives an equivalent formulation of 8.8, that writes as:

P{gk(X) # gi(X) | Y € {k, 1B} < B (Lia(Gra) — L))" (8.25)



141 8.3. Label Ranking

with 8 = B'=/((1 — )" " a®). Denoting by Fi; = (pxFi + piF))/(px + pi) the conditional
distribution of X given that Y € {k, I}, observe that:

P{Ge0(X) # g5, (X) | Y € {k, 1} = Ex dg;’l(X>xﬂ{ak,mX);ég;l(X)}]. (8.26)

Under Assumption 8.10, we almost-surely have:

dFk,l X) > 9 > e
dF Pk + D

Hence, from (8.25) and Lemma 8.11, we get that
3 ~ ~ «
E]P’{gk,l(X) # e (X)) < (Lia(Grg) — Li ) (8.27)
2 (il’lf Lk,l(g) - Lz l) + 7“,?: (6), (828)
9€g ’

using Minkowski’s inequality. Since

() {Gra(X) = g5 (X)} < {0k =5},

k<l

with probability one, combining the bound above with the union bound gives that, for all § € (0, 1),
w.p. =1—9:

P{ok #ox} < ), P{Gra(X) # g.(X)}
k<l

{0 (5) )}

Hence, for the RMR problem related to the partially observed BTLP model detailed in subsection
8.3.1, the rate bound achieved by the OVO ranking rule in Theorem 8.12 is of order n~®/(2=a)
ignoring the bias term and the logarithmic factors. In the case a = 1, it is exactly the
same rate as that attained by minimizers of the ranking risk in the standard RMR setup, as
stated in Proposition 7 in Korba et al. (2017). Whereas situations where the OVO multi-class
classification may possibly lead to ’inconsistencies’ (i.e. where the binary relationship —x is
not transitive) have been exhibited many times in the literature, no probability bound for the
excess of classification risk of the general OVO classifier, built from ERM applied to all binary
subproblems, is documented to the best our knowledge. Hence, attention should be paid to the

fact that, as a by-product of the argument of Theorem 8.12’s proof, generalization bounds for
the OVO classifier:

O

9(X) =% (1),

can be established, as stated in Corollary 8.14 below. More generally, the statistical performance
of the label ranking rule &, produced by the method described in subsection 8.3.2 can be assessed
for other risks. For instance, rather than just comparing the true label Y assigned to X to the
label 55! (1) ranked first, as in OVO classification approach, one could consider ¢4 (Y, 5x), with
Uy, o) =y ¢ {o (1), ..., o~ (k)}} for all (y,0) € {1, ..., K} x Gk, equal to 1 when Y’
does not appear in the top & list and to 0 otherwise, where k is fixed in {1, ..., K}. For any
ranking rule s : R? — G, the corresponding risk is then:

Wi(s) = E[£(Y, s(X))]. (8.29)

Set W;* = min, Wj(s), where the minimum is taken over the set of all possible ranking rules s.
The argument leading to Theorem 10 can be adapted to prove a rate bound for the risk excess of
the OVO ranking rule o* : x € R? — o}.
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Proposition 8.13. Let ke {1, ..., K} be fivzed. Then:
Wit = Wi(o¥).

Suppose in addition that Assumptions 8.8-8.10 are fulfilled. Then, for all 6 € (0,1), we have
Vn=1wp =>1-—56:

wio) - wz < 2 ('} )it -1 ( <(i)> +2 max (1nf L)~ 11, ) .

2
Proof. Let us first show that W} = Wy (c*).
For any ranking rule s and all € R?, we define:
Top,(s(x)) = {s(X)7' (1), ..., s(X) ' (k)},
and also set Topj (z) = Top(c¥). Indeed, for any ranking rule s, we can write:
Wi(s) = E[E[€(Y, s(X)) | X]],

and we almost-surely have:

K
E[6x(Y, s(X)) | X] = D m(X)I{l ¢ Top,(s(X))}. (8.30)
=1

As o is defined through (8.3), one easily sees that the quantity (8.30) is minimum for any
ranking rule s(x) s.t.
Topy (5(X)) = Top} (X). (.31)

Hence, the collection of optimal ranking rules regarding the risk (8.29) coincides with the set of
ranking rules such that (8.31) holds true with probability one. Observe that, with probability
one,

I{Y ¢ Topy(s(X))} — I{Y ¢ Topj(X)} < I{Topi(X) # Top,(s(X))},
for any ranking rule s(x), so that:
Wils) — Wi < B {Top,(s(X)) # Top} (X)}
In addition, notice that:
Wi (6x) — Wi < P{Topj(X) # Top,(6x)}

= 2 P {Topj(X) = £, Topj(X) # Top,(0x)},
LCY: #L=k

oY P{gm(X) £ g (X)),

LCY: #L=k €L, m¢L

f(ij)k(f{ — k) x (rﬁ (é) +2- max (;gélfl,m(g) - Ll*,m)a> ;

using (8.27). O

N

N

As stated above, since we have Wi (s) = R(gs) where gs : x — (s(z))~!(1) for any label ranking
rule s(z), in the case k = 1 the result above provides a generalization bound for the excess of
misclassification risk of the OVO classifier g(z) = 5, (1), that we provide in Corollary 8.14
below.

Corollary 8.14. Suppose that Assumptions 8.8-8.10 are fulfilled. Then, for all § € (0,1), we
have Vn = ng(0,a, €, B,V), w.p. =1—4§:

) ) « \7
L(g)— L* < gK(K —1) x (rf{ <(K)> + 2. max (mf Li(g9) — Lk,l) ) .

k#l €
9 # 9eg
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Proof. Tt suffices to observe that we almost-surely have:

L(g) = L* = Ex [In(X) — 1/2] x {g(X) # ¢g"(X)}]
<P{g(X) # g*(X)} =P{o%' (1) # 0% (1)}
<P{ox # o}

and to apply next the bound stated in Theorem 8.12. O

8.4 Experimental Results

This section first illustrates the results of Theorem 8.12 using simulated datasets, of which
distributions satisfy Assumption 8.8, for certain values of the noise parameter «, highlighting the
impact /relevance of this condition. In the experiments based on real data next displayed, the
OVO approach to top-k classification, ¢f Eq. (8.29), is shown to surpass rankings that rely on
the scores output by multiclass classification algorithms.

8.4.1 Synthetic Data Experiments

In this subsection, we illustrate the fast bounds proposed in this chapter by selecting and
generating data from very specific distributions. Introduce the function h,, which for any
a € [0,1]:

1 1 1-a
ha(x) = 5t 56(1’)|2£K -1,

where €(x) = 2I{2z > 1} — 1. It has good properties with regard to the usual Mammen-Tsybakov
noise condition introduced in Boucheron et al. (2005). We define a warped version hq 4, of this
function h, such that:

Pawo = o (5% if & < 0,

ha,a: (1‘) = o
0 hlLIEO = hg % + 26_:;00)) if z > xg.

We use this function to define the 7;’s by recursion, and assume that X follows a uniform
distribution on the interval [0, 1]. Introduce a depth parameter D and assume that the variable

Y belong to K = 2P+! classes. Let bgd)(k) describe the decomposition in base 2 of the value k,

ie k= ZdD:O 9265” (¥) | We introduce an evenly spaced grid over [0, 1] as the set of values

D
_p(@®
Tap = 27 W,
=1

for k € {0,2P*1}. Finally, we set:

D
ne(w) = H ha,l‘(d,k) (z).
d=0

By varying the parameter «, one can set the classification problems to be more complicated or
more easy. If a is close to 1, the problems are very simple. If « is close to 0, the problems are
more arduous.

To implement the procedure described in Figure 8.1, we learn decision stumps in [0, 1], i.e. we
optimize over the family of functions G = {gs. | s € [0,1],€ € {—1,+1}}, where, for any x € [0, 1]:

gs,e(x) = 2I{(x — s)e = 0} — 1.

Figure 8.3, Figure 8.4 and Figure 8.5 represent boxplots obtained with 100 independent estimations
on 1000 test points. Precisely, Figure 8.3 represents the number of cycles in predicted permutations,
Figure 8.4 the average miss probability P{cx # %} for the problem of predicting permutations,
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and Figure 8.5 the average Kendall distance E [d,(Gx,0%)] between predictions and ground
truths. These quantities are represented as a function of the number of learning points n with:

ne |J {10,3x10} U {10°},
i€{1,2,3,4}

One sees that learning is fast when « is close to 1, as expected. Figure 8.5 shows that the average
Kendall’s 7 distance decreases quickly when « is close to 1, as does the the proportion of cycles
in predictions, see Figure 8.3. On the other hand, due to the difficulty of predicting a complete
permutation, the influence of the noise parameter on the evolution of the probability of error
when n grows is more subtle, see Figure 8.4.

8.4.2 Real Data Experiments

The MNIST dataset is composed of 28 x 28 grayscale images of digits and labels being the value
of the digits. In this experiment, we learn to predict the value of the digit between K = 10 classes
corresponding to digits between 0 and 9. The dataset contains 60,000 images for training and
10, 000 images for testing, all equally distributed within the classes. This dataset has been praised
for its accessibility, but was recently criticized for being too easy, which led to the introduction
of the dataset Fashion-MNIST, see Xiao et al. (2017). It has the same structure as MNIST, with
regard to train and test splits, number of classes and and image size. It consists in classifying
types of clothing apparel, e.g. dress, coat and sandals, and is harder to classify than MNIST.

Our experiments aim to show that the OVO approach for top-k classification, ¢f Eq. (8.29), can
surpass rankings relying on the scores output by multiclass classification algorithms. For that
matter, we evaluated the performances of both approaches using a logistic regression to solve
binary classification in the OVO case and multiclass classification in the other. For that matter,
we relied on the implementations provided by the python package scikit-learn, specifically
the LogisticRegressionCV class. The dimensionality of the data was reduced using standard
PCA with enough components to retain 95% of the variance for both datasets, which makes for
153 components for MNIST and 187 components for Fashion-MNIST.

Results are summarized in Table 8.1. They show that the OVO approach performs better than
the logistic regression for the top-1 accuracy, i.e. classification accuracy, as well as for the top-5
accuracy. While the OVO approach requires us to train K(K — 1)/2 = 45 models, those are
trained with less data and output values. Both approaches end up requiring a similar amount of
time to be trained.

8.5 Conclusion

In this chapter, a statistical problem halfway between multiclass classification and posterior
probability estimation, referred to as label ranking here, was considered. The goal was to design a
method to rank, for any test observation X, all the labels y that can be possibly assigned to it by

- 1 11
—~
&
N—
S
O L O 1 T T — T
0.0 0.5 1.0
xr xr
(a) Distribution for o = 0.2. (b) Distribution for o = 0.8.
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Figure 8.2: Representation of the proportion of each class k over [0, 1].
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Figure 8.3: Boxplot of 100 independent estimations of the proportion of predictions
with cycles as a function of n.
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Figure 8.4: Boxplot of 100 independent estimations of P{x # %} as function of n.
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Figure 8.5: Boxplot of 100 independent estimations of E [d,(dx,0%)] as function of n.

decreasing order of magnitude of the (unknown) posterior probability P{Y = y | X}. Formulated
as a specific ranking median regression problem with incomplete observations, this problem was
shown to have a solution that takes the form of a Copeland score, involving pairwise comparisons
only. Based on this crucial observation, it was proved that the OVO procedure for multiclass
classification permits to build, from training classification/labeled data, the optimal ranking
with high probability, under appropriate hypotheses. This was also empirically supported by
numerical experiments. Remarkably, the analysis carried out here incidentally provided a rate
bound for the OVO classifier.

The analysis presented here advocates for a different method than usual class probabilities to
predict an ordered list of the most likely labels for some observation. As such, it fits into our
larger effort directed at finding more suitable loss functions for specific problems in biometrics,
which increases the reliability of biometric systems. A flaw of said systems is their impaired
generalization when deployed on different statistical populations than that used for training.
In that regard, some authors believe that automatic facial recognition might suffer from an
other-race effect, which refers to the better capacity of humans to distinguish faces of their own
ethnicity, rather than those of others (Furl et al., 2002). That effect is usually explained by a more
important exposure to faces of our own ethnicity. It suggests that increasing the representation
of some populations during training process might help adapting the biometric system to specific
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Dataset Model Top-1  Top-5 Fit time

LogReg  0.924 0.995 50 min
MNIST OvVO 0.943 0.997 40 min

Fashion  LogReg  0.857  0.997 35 min
-MNIST OovVO 0.863  0.997 60 min

Table 8.1: Top-k performance. The last column is the time to fit the model.

test distributions, which is the topic of the next chapter.



Chapter 9

Selection Bias Correction

Summary: We consider statistical learning problems, when the distribution
P’ of the training observations Z1, ..., Z/, differs from the test distribution P
but is still defined on the same measurable space as P and dominates it. This
problem often arises in biometrics, as companies often have large databases,
but must tailor their systems to specific populations. Our mathematization
of 1:1 identification presented in Part II does not cover that topic. In the
unrealistic case where the likelihood ratio ®(z) = dP/dP’(z) is known, one
may straightforwardly extend Empirical Risk Minimization (ERM) to this
transfer learning setup using Importance Sampling (IS), i.e. by minimizing a
weighted version of the risk functional computed on the ’biased’ training data
Z! with weights ®(Z!). The importance function ®(z) is generally unknown
in practice, but frequently takes — e.g. when learning: with class imbalance,
in a stratified population or with only positive and unlabeled data — a simple
form and is directly estimated from the Z’s and some auxiliary information
on P. Using the same tools as for finite-sample generalization bounds for
binary classification (Chapter 2), we then prove that the usual generalization
capacity of ERM is preserved when plugging the resulting estimates of the
®(Z])’s into the weighted empirical risk. We provide experiments, that show
on ImageNet — an image dataset based on the hierarchical lexical database
WordNet — that correcting bias on high-level categories leads to significant
performance improvements for the classification task.

9.1 Introduction

Prediction problems are of major importance in statistical learning. The main paradigm of
predictive learning is Empirical Risk Minimization (ERM in abbreviated form), see e.g. Devroye
et al. (1996). In the standard setup, Z is a random variable (r.v. in short) that takes its values
in a feature space Z with distribution P, © is a parameter space and £ : © x Z — R, is a
(measurable) loss function. The risk is then defined by: V6 € ©,

Rp(0) = Ep[£(0, 2)], (9.1)

and more generally for any measure Q on Z: Rg(0) = §;/4(0,2)dQ(z). In most practical
situations, the distribution P involved in the definition of the risk is unknown and learning
is based on the sole observation of an independent and identically distributed (i.i.d.) sample
Zi, ..., Zy drawn from P and the risk (9.1) must be replaced by an empirical counterpart (or a
possibly smoothed /penalized version of it), typically:

Rp(0) =

S|

316160,2) = Ry (0), (92

where P, = (1/n) >, 8z, is the empirical measure of P and . denotes the Dirac measure at any
point z. With the design of successful algorithms such as neural networks, support vector machines
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or boosting methods to perform ERM, the practice of predictive learning has recently received a
significant attention and is now supported by a sound theory based on results in empirical process
theory. The performance of minimizers of (9.2) can be indeed studied by means of concentration
inequalities, quantifying the fluctuations of the maximal deviations supgceo |7€p(9) —Rp(9)]
under various complexity assumptions for the functional class F = {{(, -): 6 € O} (e.g. VC
dimension, metric entropies, Rademacher averages), see Boucheron et al. (2013) for instance.
Although, in the Big Data era, the availability of massive digitized information to train predictive
rules is an undeniable opportunity for the widespread deployment of machine-learning solutions,
the poor control of the data acquisition process one is confronted with in many applications
puts practitioners at risk of jeopardizing the generalization ability of the rules produced by
the algorithms implemented. Bias selection issues in machine-learning are now the subject of
much attention in the literature, see Bolukbasi et al. (2016), Zhao et al. (2017), Hendricks et al.
(2018), Liu et al. (2016) or Huang et al. (2006). In the context of face analysis, a research area
including a broad range of applications such as face detection, face recognition or face attribute
detection, machine learning algorithms trained with baised training data, e.g. in terms of gender
or ethnicity, raise concerns about fairness in machine learning. Unfair algorithms may induce
systemic undesired disadvantages for specific social groups, see Das et al. (2018) for further
details. Several examples of bias in deep learning based face recognition systems are discussed in
Nagpal et al. (2019).

Throughout the present chapter, we consider the case where the i.i.d. sample Z{, ..., Z!
available for training is not drawn from P but from another distribution P’, with respect to
which P is absolutely continuous, and the goal pursued is to set theoretical grounds for the
application of ideas behind Importance Sampling (IS in short) methodology to extend the ERM
approach to this learning setup. This setup often arises in biometrics. Indeed, companies often
have large databases, but must tailor their systems to specific populations. We highlight that
the problem under study is a very particular case of Transfer Learning (see e.g. Pan and
Yang (2010), Ben-David et al. (2010), Storkey (2009) and Redko et al. (2019)), a research area
currently receiving much attention in the literature and encompassing general situations where
the information/knowledge one would like to transfer may take a form in the target space very
different from that in the source space (referred to as domain adaptation).

Weighted ERM (WERM). In this chapter, we investigate conditions guaranteeing that values
for the parameter 6 that nearly minimize (9.1) can be obtained through minimization of a
weighted version of the empirical risk based on the Z!’s, namely:

Runl0) = Rps, (0), (9.3)
where f’w,n = (1/n) 2 widz and w = (wy, ..., wy) € R} is a certain weight vector. Of
course, ideal weights w* are given by the likelihood function ®(z) = (dP/dP’)(z): w} = ®(Z])
for i € {1, ..., n}. In this case, the quantity (9.3) is obviously an unbiased estimate of the true
risk (9.1):

Ep |Rp, ()] = Rr(), (94)

and generalization bounds for the R p-risk excess of minimizers of ﬁw* n can be directly established
by studying the concentration properties of the empirical process related to the Z!’s and the
class of functions {®(-)£(0, -) : 0 € O} (see section 9.2 below). However, the importance function
® is unknown in general, just like distribution P. It is the major purpose of this chapter to
show that, in far from uncommon situations, the (ideal) weights w} can be estimated from the
Z!s combined with auxiliary information on the target population P. As shall be seen below,
such favorable cases include in particular classification problems where class probabilities in the
test stage differ from those in the training step, risk minimization in stratified populations (see
Bekker et al. (2019)), with strata statistically represented in a different manner in the test and
training populations or even positive-unlabeled learning (PU-learning, see e.g. du Plessis et al.
(2014)). In each of these cases, we show that the stochastic process obtained by plugging the
weight estimates in the weighted empirical risk functional (9.3) is much more complex than a
simple empirical process (i.e. a collection of i.i.d. averages) but can be however studied by
means of linearization techniques, in the spirit of the ERM extensions established in Clémencon
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et al. (2008) or Clémengon and Vayatis (2008). Learning rate bounds for minimizers of the
corresponding risk estimate are proved and, beyond these theoretical guarantees, the performance
of the weighted ERM approach is supported by convincing numerical results.

The chapter is structured as follows. In section 9.2, the ideal case where the importance function
® is known is preliminarily considered and a first basic example where the optimal weights can
be easily inferred and plugged into the risk without deteriorating the learning rate is discussed.
The main results of the chapter are stated in section 9.3, which shows that the methodology
promoted can be applied to two important problems in practice, risk minimization in stratified
populations and PU-learning, with generalization guarantees. Illustrative numerical experiments
are displayed in section 9.5, while some concluding remarks are collected in section 9.6.

9.2 Importance Sampling - Risk Minimization with Biased
Data

Here and throughout, the indicator function of any event & is denoted by I{£}, the sup norm of
any bounded function h : Z — R by ||h||. We place ourselves in the framework of statistical
learning based on biased training data previously introduced. To begin with, we consider the
unrealistic situation where the importance function ® is known, insofar as we shall subsequently
develop techniques aiming at mimicking the minimization of the ideally weighted empirical risk:

R (6) = % S wke(6, ), 9.5)

i=1

namely the (unbiased) Importance Sampling estimator of (9.1) based on the instrumental data
Zi, ..., Z),. The following result describes the performance of minimizers 5,”; of (9.5). Since the
goal of this chapter is to promote the main ideas of the approach rather than to state results
with the highest level of generality, we assume throughout the chapter for simplicity that ¢ and
® are both bounded functions. For o1, ..., o, independent Rademacher random variables (i.e.
symmetric {—1, 1}-valued r.v.’s), independent from the Z!’s, we define the Rademacher average
associated to any class of function F as:

This quantity can be bounded by metric entropy methods under appropriate complexity assump-
tions on the class Fy, it is for instance of order 1/4/n when Fy is a VC-major class with finite
VC dimension, see e.g. Boucheron et al. (2005). In particular, we are interested in the family

F:={zeZ—{0,z):0c06}.

R (Fo) :=E, lsup (1/n)
feFo

o f(Z))
=1

Lemma 9.1. We have Vn > 1, with probability (w.p) at least 1 — §:

~ . , 2log(1/6
Rp(0%) —minRp(0) < 4||®||E[R,(F)] +2[|®||c  sup £(6,2) M.
0e® (0,2)eOXZ n

Proof. Let 6 € (0,1). Applying the classic maximal deviation bound stated in Theorem 3.2 of
Boucheron et al. (2005) to the bounded class K = {z € Z — ®(2)l(0,z) : 0 € O}, we obtain that,
wp =1—4:

5 5 21og(1/6
sup (R, (0) — E [Rw*m(e)” B[R] + 18]l sup 66, 2)] ) 212BU/0),
00 (6,2)e@x Z n

In addition, by virtue of the contraction principle, we have R/, (K) < ||®||o R, (F) almost-surely.
The desired result can be thus deduced from the bound above combined with the classic bound:

Rp(0%) — min Rp(60) < 25up [Rops o (0) — E [ﬁw*,n(e)” .
6e® 9eO©
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Of course, when P’ = P, we have ® = 1 and the bound stated above simply describes the
performance of standard empirical risk minimizers. The proof is based on the standard bound:

~

Rp(0%) — min Rp(0) < 25up |Ry o(0) — E [ﬁw* n(o)]\ ,
0€© 0e© 7

combined with basic concentration results for empirical processes. Of course, the importance
function ® is generally unknown and must be estimated in practice. As illustrated by the
elementary example below (related to binary classification, in the situation where the probability
of occurence of a positive instance significantly differs in the training and test stages), in certain
statistical learning problems with biased training distribution, ® takes a simplistic form and can
be easily estimated from the Z!’s combined with auxiliary information on P.

Binary classification with varying class probabilities. The flagship problem in supervised
learning corresponds to the simplest situation, where Z = (X,Y), Y being a binary variable
valued in {—1,+1} say, and the r.v. X takes its values in a measurable space X and models
some information hopefully useful to predict Y. The parameter space © is a set G of measurable
mappings (i.e. classifiers) g : X — {—1, +1} and the loss function is given by (g, (z,y)) =
I{g(x) # y} for all g in G and any (x,y) € X x {—1, +1}. The distribution P of the random
pair (X,Y") can be either described by X’s marginal distribution F' and the posterior probability
n(z) = P{Y = +1| X = a} or else by the triplet (p, F'y, F_) where p = P{Y = +1} and F,(dz) is
X’s conditional distribution given Y = o1 with ¢ € {—, +}. It is very common that the fraction
of positive instances in the training dataset is significantly lower than the rate p expected in the
test stage, supposed to be known here. We thus consider the case where the distribution P’ of
the training data (X{,YY), ..., (X/,Y.)) is described by the triplet (p’, F\, F_) with p’ < p. The
likelihood function takes the simple following form:

B(z,y) = Ty = +1) 5 + 1y = 115 := 6(0),

which reveals that it depends on the label y solely, and the ideally weighted empirical risk process
is:

~ pl 1—-p1
Rurnlg) = 5= Y Hg(X]) = -1} + T > I{g(x)) = +1}. (9.6)
p ni:Y/:l p ni:Y.’=71

i

In general the theoretical rate p’ is unknown and one replaces (9.6) with:

Ronale) = 2 3 Ho(x) = 1} + 2 S T(g(x)) = +1), (9.7)
Ty =1 T aY/=-1

~

where n/, = 3" K{Y/ = +1} = n—n’, 0Ff = ¢(Y/) and ¢(y) = {y = +1}np/n/, + {y =
—1}n(1—p)/n’_. The stochastic process above is not a standard empirical process but a collection
of sums of two ratios of basic averages. However, the following result provides a uniform control
of the deviations between the ideally weighted empirical risk and that obtained by plugging the

empirical weights into the latter.

Lemma 9.2. Let e € (0, 1/2). Suppose that p' € (¢, 1 —¢). For any 6 € (0,1) and n € N* we
have w.p =1 —4§:

~ ~

2 [log(2/0)
-~ — < Gy a8
ilelg Rw*,n(g) Rw*,n(g)’ ) om

as soon as n = 2log(2/3)/2.

Proof. Apply twice the Taylor expansion:
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So as to get:

L1 ni/n—p  (ny/n—p)?
nl/n I p? p?nl/n

1 1 n /n—1+p (n /n—1+7p)?
n o~ 1-p (1-p)? (1—p)2n /n

This yields the decomposition:
D D p n/Jr A N ’ /
R nl9) = Rurn(9) = = 5 (5 =9 ) = > Ho(X) = =1, Y] = +1}

1—p n’_ N 1< , ,
- (=1 N ' He(X) = +1. Y/ = -1
= ( +p>n,§1 {o(XD) = +1, ¥/ = -1}
p(ny/n—p')? 1 ¢ , ,
7,§ Hg(X) =—1. Y = +1
+ p’2n’+/n n {9(X}) , Y = +1})

- 77,/ n — N AV n
+ (1 z()i(;{)%,_l/;p) %Zﬂ{g(xg) LY = —1).

We deduce that:

~ ~ n, /n —p| p 1—p
Raw n(9) = Rumn9)| < 20 (1 [l /= of :
#n(9) *n(9) g2 + [n/n =Pl ny/n * 1—n/ /n

By virtue of Hoeffding inequality, we obtain that, for any ¢ € (0,1), we have w.p =1 —§:

/} < log(2/0)

! j—
=] < [ B2
so that, in particular, min{n/, /n, 1 — 0/, /n} > ¢ — 1/l0og(2/6)/(2n). This yields the desired
result. O

Consequently, minimizing (9.7) nearly boils down to minimizing (9.6). Combining Lemmas 9.2
and 9.1, we immediately get the generalization bound stated in the result below.

Corollary 9.3. Suppose that the hypotheses of Lemma 9.2 are fulfilled. Let n € N* and g, be
any minimizer of Rgx ,, over the class G. We have w.p. =1 —4:

210g(2/6)> 4 [log(4/5)

2max(p, 1 - p) 4
n

Rp(G) ~ inf Rp(g) < (m[m;(g)] +

€ g2 on

as soon as n = 2log(4/0)/e*; where R,(G) = (1/n)Eq[sup,eg | 2y oil{g(X]) # Y/}].
Proof. Observe first that ||®||,, < max(p, 1 —p)/e and

Rp(Jn) — inf Rp(g) < 2sup |Rax n(g) — ﬁw*,n(g)‘ +25up Ry n(9) — Rp(9)|-
9eg geg 9geg

The result then directly follows from the application of Lemmas 9.1-9.2 combined with the union
bound. O

Hence, some side information (i.e. knowledge of parameter p) has permitted to weight the
training data in order to build an empirical risk functional that approximates the target risk
and to show that minimization of this risk estimate yields prediction rules with optimal (in the
minimax sense) learning rates. The purpose of the subsequent analysis is to show that this
remains true for more general problems. Observe in addition that the bound in Corollary 9.3
deteriorates as ¢ decays to zero: the method used here is not intended to solve the few shot
learning problem, where almost no training data with positive labels is available (i.e. p’ ~ 0).
As shall be seen in subsection 9.3.2, alternative estimators of the importance function must be
considered in this situation.
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Remark 9.4. Although the quantity (9.7) can be viewed as a cost-sensitive version of the
empirical classification risk based on the (X, Y/!)’s (see e.g. Bach et al. (2006)), we point out
that the goal pursued here is not to achieve an appropriate trade-off between type I and type 11
errors in the P’ classification problem as in biometric applications for instance (i.e. optimization
of the (F'y, F_)-ROC curve at a specific point) but to transfer knowledge gained in analyzing the
biased data drawn from P’ to the classification problem related to distribution P.

Related work. We point out that the natural idea of using weights in ERM problems that mimic
those induced by the importance function has already been used in Sugiyama et al. (2007) for
covariate shift adaptation problems (i.e. supervised situations, where the conditional distribution
of the output given the input information is the same in the training and test domains), when, in
contrast to the framework considered here, a test sample is additionally available (a method for
estimating directly the importance function based on Kullback-Leibler divergence minimization
is proposed, avoiding estimation of the test density). Importance sampling estimators have been
also considered in Garcke and Vanck (2014) in the setup of inductive transfer learning (the tasks
between source and target are different, regardless of the similarities between source and target
domains), where the authors have proposed two methods to approximate the importance function,
among which one is again based on minimizing the Kullback-Leibler divergence between the two
distributions. In Cortes et al. (2008), the sample selection bias is assumed to be independent
from the label, which is not true under our stratum-shift assumption or for the PU learning
problem (see section 8.3). Lemma 9.1 assumes that the exact importance function is known, as
does Cortes et al. (2010). The next section introduces new results for more realistic settings
where it has to be learned from the data.

9.3 Weighted Empirical Risk Minimization - Generaliza-
tion Guarantees

Through two important and generic examples, relevant for many applications, we show that
the approach sketched above can be applied to general situations, where appropriate auxiliary
information on the target distribution is available, with generalization guarantees. We work in this
section under the condition that the loss function is bounded assuming sup g ,)eex z £(0, 2) < L.

9.3.1 Statistical Learning from Biased Data in a Stratified Population

A natural extension of the simplistic problem considered in section 9.2 is multiclass classification
in a stratified population. The random labels Y and Y’ are supposed to take their values
in {1, ..., J} say, with J > 1, and each labeled observation (X,Y’) belongs to a certain
random stratum S in {1, ..., K} with K > 1. Again, the distribution P of a random element
Z = (X,Y,S) may be described by the parameters {(p;x, Fjr): 1 <j<J, 1 <k < K} where
F}j 1 is the conditional distribution of X given (Y, S) = (j,k) and pj x = P(x y,s)~p{Y = 4,5 = k}.
Then, we have:

J K
dP(z,y,s) = Y| > Uy = j, s = k}p; xdFj x(x),
j=1k=1

and considering a distribution P’ with F} , = F j’ . but possibly different class-stratum probabilities
p;} & the likelihood function becomes:

dp L& pjn
(@ 8) = 3, ) Sy = jos = k)= 6(y, 5).
=1 k=1 Pk

A more general framework can actually encompass this specific setup by defining 'meta-strata’ in
{1, ..., J} x {1, ..., K}. Strata may often correspond to categorical input features in practice.
The formalism introduced below is more general and includes the example considered in the
preceding section, where strata are defined by labels.
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Learning from biased stratified data. Consider a general mixture model, where distributions
P and P’ are stratified over K > 1 strata. Namely, Z = (X, S) and Z’ = (X', S") with auxiliary

random variables S and S’ (the strata) valued in {1, ..., K}. We place ourselves in a stratum-
shift context, assuming that the conditional distribution of X given S = k is the same as that of
X' given S = k, denoted by Fy(dz), for any k € {1, ..., K}. However, stratum probabilities

pr = P(S = k) and pj, = P(S" = k) may possibly be different. In this setup, the likelihood
function depends only on the strata and can be expressed in a very simple form, as follows:

AP X Pr |
ﬁ(x’ s) = Z I{s = k‘}pf, = ¢(s).

k=1 k
In this case, the ideally weighted empirical risk writes:

K

i Z) Y IS; = k}

k=1

w*n

3\>—‘

If the strata probabilities pi’s for the test distribution are known, an empirical counterpart of the
ideal empirical risk above is obtained by simply plugging estimates of the p}’s computed from
the training data:

n K
Pk
R n(0) = 3, 00, 2)) 3, {S = K} (9.8)
i=1 k=1 k
with ), = Y7 I{S! = k}, @F = $(S!) and ¢(s) = S, I{s = k}npy/n.
A bound for the excess of risk associated to Eq. (9.8) is given in Theorem 9.6, that can be viewed
as a generalization of Corollary 9.3. It relies on Lemma 9.1 and Lemma 9.5 below.

Lemma 9.5. Let € € (0, 1/2). Suppose that pj, € (¢, 1 —¢) for ke {1, ..., K}. For any
0€(0,1) and n € N*, we have w.p. =21 —0:

sup ﬁ,@*m(e) — ﬁu,*,n(ﬂ)‘ x
6O

2L [log(2K/d)
= 2n

as soon as n > 2log(2K /8)/e*, where L = sup(p ,ycox z £(0, 2).

Proof. Apply the Taylor expansion

1 1 2z—a  (z—a)
T a a? xa?
so as to get for all ke {1,..., K}
11 my/n—p,  (n/n— )2
n/n P Py piEng/n
This yields the decomposition
n K
= _ 1 pe (1] pr(ng,/n — p3)°
Rﬁ) na_ wn - GZI ]IS/=]{/’ PR IRy M .
*, ( ) *, n ; kEl { 7 }< p;€2 (’fl Pk + pg’ﬂ;c/’ﬂ

We deduce that

< ~ L , /1 — Pl
R n(0) = R n( ‘\ - Z Inj/n—pilpe [ 1+ — .

ny/n
By virtue of Hoeffding inequality, we obtain that, for any k € {1,..., K} and 6 € (0,1), we have
w.p =1—9:

/

i/ — ph| < [ PE20)

2n
so that, by a union bound, maxy{n)/n} > ¢ — 4/log(2K/§)/(2n). This yields the desired

result.
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Theorem 9.6. Let ¢ € (0,1/2) and assume that pj, € (6,1 —¢) fork=1,..., K. Let 0% be any

minimizer of ﬁ@*,n as defined in (9.8) over class ©. For any n € N* and ¢ € (0,1), we have w.p
>1-9:

~ 2 21og(2 4L [log(4K
Rp(0%) — inf Rp(0) < —k Pk (2E[R;(f)] 4L M) . log(4K/0)
LEE) € n € 2n

as soon as n = 2log(4K /8)/e*; where R, (F) = (1/n)E,[supgee | iy 0il(0, Z])|], and the loss
is bounded by L = sup(g .ycoxz {(0,2).

Proof. Observe first that ||®||,, < maxy py/e and

Rp(0F) — inf Rp(0) < 2s5up [Roswn(0) ﬁw*’n(e)‘ +25up [Rou(0) — Rp(0)].
ESC) EC) EC)

The result then directly follows from the application of Lemmas 9.1 and 9.5 combined with the

union bound. O

Just like in Corollary 9.3, the bound in Theorem 9.6 explodes when € vanishes, which corresponds
to the situation where a stratum k € {1,..., K} is very poorly represented in the training data,
i.e. when pj, << pi. Again, as highlighted by the experiments carried out, reweighting the losses
in a frequentist (ERM) approach guarantees good generalization properties in a specific setup
only, i.e. when the training information, though biased, is sufficiently informative.

9.3.2 Positive-Unlabeled Learning

Relaxing the stratum-shift assumption made in the previous subsection, the importance function
becomes more complex and writes:

dP 3 py dF,
Bls) = gpr(0:9) = Lo = B} G (0),
=1 c

where F, and Fj, are respectively the conditional distributions of X given S = k and of X’ given
S’ = k. The Positive-Unlabeled (PU) learning problem, which has recently been the subject of
much attention (see e.g. du Plessis et al. (2014), du Plessis et al. (2015), Kiryo et al. (2017)),
provides a typical example of this situation. Re-using the notations introduced in section 9.2, in
the PU problem, the testing and training distributions P and P’ are respectively described by
the triplets (p, Fy, F_) and (q, Fy, F), where F = pF. + (1 — p)F_ is the marginal distribution
of X. Hence, the objective pursued is to solve a binary classification task, based on the sole
observation of a training sample pooling data with positive labels and unlabeled data, ¢ denoting
the theoretical fraction of positive data among the dataset. As noticed in du Plessis et al. (2014)
(see also du Plessis et al. (2015), Kiryo et al. (2017)), the likelihood/importance function can be
expressed in a simple manner. Precisely, V(z,y) € X x {—1, +1},

P 1 p dFy
P =-[{y=+1 —ly=-1} - — —(o)I[{y = —1}. 9.9
(@) = Ly = 1} + T @y = 1) 99
Based on an i.i.d. sample (X1,Y{), ..., (X],Y,) drawn from P’ combined with the knowledge

of p (which can also be estimated from PU data, see e.g. du Plessis and Sugiyama (2014)) and
using that F_ = (1/(1 — p))(F — pF,), one may obtain estimators of ¢, F, and F by computing
W jn = (1) S0 Y, = +1), B = (1n) X0 Y, = +1)dx; and F = (1/n ) X1 T{Y! =
—1}dx;. However, plugging these quantities into (9.9) do not permit to get a statistical version
of the importance function, insofar as the probability measures 1:“+ and F' are mutually singular
with probability one, as soon as F', is continuous. Of course, as proposed in du Plessis et al.
(2014), one may use statistical methods (e.g. kernel smoothing) to build distribution estimators,
that ensures absolute continuity but are subject to the curse of dimensionality. However, WERM
can still be applied in this case, by observing that: Vg € G,

2 1
Rp(g) = —p +Ep ;p]l{g(X/) =1, Y =+1} + 177(111{9()(’) — 41, Y =-1}|, (9.10)
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which leads to the weighted empirical risk:
2p 1
LN M) =-1p+ - Y Tg(X) =1}, (9.11)

T ay/=+1 T ay/=-1

i

Minimization of (9.11) yields rules g, whose generalization ability regarding the binary problem
related to (p, Fy, F_) can be guaranteed, as shown by the following result Theorem 9.8 implied
by combining Lemmas 9.1 and 9.7, the form of the weighted empirical risk in this case being
quite similar to (9.7).

Lemma 9.7. Let € € (0, 1/2). Suppose that q € (¢, 1 —¢€). For any § € (0,1) and n >
2log(2/0)/e2, we have w.p > 1—4:

~ ~ 22p+1) [log(2/0)
Rﬁ) n - Rw n <
sup [Rax, (9) *n(9) = om

Proof. Apply twice the Taylor expansion

1 1 z-—a (r —a)?
T a a? za? '
so as to get
11 wa—q | (/=g
n, /n q q? ¢@n'/n
1 B 1 nl/n—1+g¢ (n"_/n—1+q)?
n’_/n 1—gq (1-q)? (1—q?n"/n

This yields the decomposition

~ 2p (' 1
R ale) - Ruwnls) = = 2 (" ) £ (X)) = ~1, ¥/ = +1)

L () S g = 1 v = )
Taf \n 17 9) 5 2 MoX) =1, 77 -

DO
ol
—~
3
+
~
3
-y
[\
—
1=
=
~
e}

(X)) =-1,Y =+1}
g(X)) =+1, Y/ = —1}.
We deduce that

~ ~

n’ /n—q 9 1
R@*,Ag)—nw*,n(g))g+/€2'<2p+1+|n;/n_q|( P, ))

ny/n 1—n/n

By virtue of Hoeffding inequality, we obtain that, for any J € (0,1), we have w.p. =1 —4:

log(2/0)

/

— g _ 7

|n+/n Q| m ’

so that, in particular, min{n/, /n, 1 —n/ /n} > ¢ — 4/log(2/6)/(2n). This yields the desired
result. O

Theorem 9.8. Let ¢ € (0, 1/2). Suppose that q € (¢, 1 —¢). Let G, be any minimizer of the
weighted empirical risk (9.11) over class G. For any & € (0,1) and n > 2log(4/8)/e2, we have
wp=1-6:

Re(a) — inf Rp(g) < 222201 (21&[%;@)] g

)

210g(2/5)> L A2p+ 1) [log(4/5)

n g2 2n

where R,(G) = (1/n)Eq[supgeg | 33 oil{g(X]) # Y/ }H].
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Proof. Observe first that ||®||, < max(2p, 1)/e and

Rp(Jn) — inf Rp(g) < 2sup |Rax n(g) — ﬁw*,n(g)‘ +25up Ry n(9) — Rp(9)|,
9eg geg 9eg

with weighted empirical risk ﬁw*,n(g) defined in (9.11). The result then directly follows from
the application of Lemmas 9.1 and 9.7 combined with the union bound. O

In the next section, we show that better generalization bounds can be obtained when one has an
estimator 7 of the posterior probability 7, which paves the way for iterative procedures for PU
learning.

9.3.3 Alternative Approach for Positive-Unlabeled Learning

In the usual PU learning approach, observe that:

®(z,y) = L1y = +1) + gy - (9.12)

1
in the case when an estimate 7)(z) of n(x) is available, one can perform WERM using the empirical
weight function:

A~

~ 1 -7z

B(x,y) = p]I{y = +1}+ 7 "</> I{y = —1}. (9.13)
A bound that describes how this approach generalizes, depending on the accuracy of estimate 7,
can be easily established, which is summarized in Theorem 9.10, again a direct consequence of
Lemmas 9.1 and 9.9.

Lemma 9.9. Let weights ©* be defined as in Theorem 9.10. Let € € (0, 1/2). Suppose that
qe (e, 1 —¢). For any 6 € (0,1) and n > 2log(2/8)/e?, we have w.p =1 — §:

log(2/9 N
sup [ R (9) ~ Rove )] < 20 B2 2 up (@) — )
geg £ 2n TeX

Proof. Apply twice the Taylor expansion:

1 1 z—a (z—a)?
T a a? za?
S0 as to get:
1 1 nly/n—q (0 /n—q)
nl/n q ¢ ¢*n'y/n
1 B 1L nl/n—1+q (n_/n—1+gq)?
n’/n 1—¢q (1-q)? (1—q)*n”/n

This yields the decomposition:

ﬁﬁ)*,n(g) - 7zw*,n(g) ==

Ulfl)(n, ) i MI{g(X!) = +1, Y] = -1}

(n+/n , _ /_
q*n'y /n nE]I{ 9(X3) 1Y =+1}

' /n—1+¢)?%1 & o N .

Wn;a—n(xi))ﬂ{gm) =41, Y = -1

e 2 () A Hg(X) = +1. ¥ = 1)

i=1
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We deduce that:

~ ~ In', /n — q , 1 1
Ra -R <——— |1 -
w*,n(g) w*;ﬂ(g) e2 + |n+/n q| n/Jr/TL + 1— n/jL/n

n’_/n

+ sup [7j(z) — ()]

1_qa:€X

By virtue of Hoeflding inequality, we obtain that, for any § € (0,1), we have w.p. > 1 —4:

log(2/9)
[ /n —al <\ =5
so that, in particular, min{n’_/n, 1 —n’ /n} > e — 4/log(2/6)/(2n). Moreover, still under this
event, n’_/n < 2(1 — q) if n = log(2/5)/(2¢?). This yields the desired result. O

Theorem 9.10. Let @} = @(X;,Yi’) forallie{l,...,n} with ® defined in (9.13). Suppose that
the hypotheses of Lemma 9.9 are fulfilled. Let g, be any minimizer of R ,, over class G. For
any § € (0,1) and n = 2log(4/5)/e?, we have w.p =1 —4§:

~ . 2max(p,1 —p
Rp(gn) — ;Ielé Rp(9) g%

4 [log(4/9) ~
+ 3 oy T 4225 () — n(x)].

(Em @1+ 21og<2/5>>

Proof. Observe first that ||®||s, < maxy px/c and

Rp(B%) — inf Rp(0) < 2s5up R (0) — ﬁw*m(a)‘ +25up R n(6) — Rp(6)].
0e© 0€© 0O

The result then directly follows from the application of Lemmas 9.1-9.9 combined with the union

bound. O

9.3.4 Learning from Censored Data

Another important example of sample bias is the censorship setting where the learner has only
access to (right) censored targets min(Y”’,C’) instead of Y’. Intuitively, this situation occurs
when Y is a duration/date, e.g. the date of death of a patient modeled by covariates X', and the
study happens at a (random) date C’. Hence if C' < Y”, then we know that the patient is still
alive at time C’ but the target time Y’ remains unknown. This problem has been extensively
studied (see e.g. Fleming and Harrington (2011), Andersen et al. (2012) and the references therein
for the asymptotic theory and Ausset et al. (2019) for finite-sample guarantees): we show here
that it is an instance of WERM. Formally, we respectively denote by P and P’ the testing and
training distributions of the r.v.’s (X, min(Y,C),I{Y < C}) and (X', min(Y’,C"),I{Y’ < C"})
both valued in R? x R x {0,1} (with Y;Y”, C,C" all nonnegative r.v.’s) and such that the pairs
(X,Y) and (X', Y’) share the same distribution ). Moreover, C' > Y with probability 1 (i.e.
the testing data are never censored) and Y’ and C’ are assumed to be conditionally independent
given X'. Hence, for all (x,y,d) € R x R, x {0, 1}:

dP(z,y,0) = 0dQ(x,y),
and
0dP'(x,y,0) = 0P(C" = y)dP(X' = z,Y' = y|C" = y) = §Sc (y|x)dQ(x, y),

where Scr(y|lx) = P(C' = y| X’ = z) denotes the conditional survival function of C’ given X'.
Then, the importance function is:
dpP )
-4 §) = — 9%
) dP/ ($7y7 ) SC’(y|-T)

In survival analysis, the ratio 6/Sc- (y|z) is called IPCW (inverse of the probability of censoring
weight) and Scr(y|z) can be estimated by using the Kaplan-Meier approach, see Kaplan and
Meier (1958).

V(l’,y,5) € Rd X IRJr x {07 1}7 <I>(x7y,5
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9.4 Extension to Iterative WERM

As highlighted in Remark 2, the importance function can be expressed as a function of the
ideal decision function in certain situations: Eq. (9.12) involves the regression function n(z),
that defines the optimal (Bayes) classifier g*(x) = 2I{n(x) > 1/2} — 1. This simple observation
paves the way for a possible incremental application of the WERM approach: in the case where
the solution of the WERM problem considered outputs an estimate of the optimal decision
function, it can be next re-used for defining and solving a novel WERM problem. Whereas
binary classification based on PU data only aims at recovering a single level set of the posterior
probability n(x), it is not the case of a more ambitious statistical learning problem, referred to as
bipartite ranking, for which such an incremental version of WERM can be described.

Bipartite ranking based on PU data. In bipartite ranking, the statistical challenge consists
of ranking all the instances x € X through a scoring function s : X — R in the same order
as the likelihood ratio U(X) = (dFy/dF_-)(X), or, equivalently, as the regression function
n(z) =P{Y = +1| X =z}, z € X: the higher the score s(X), the more likely one should observe
Y = +1. Let § = {s: X — R measurable} denotes the set of all scoring functions on the input
space X. A classical way of measuring ”"how much stochastically larger” a c.d.f. g on R is than
another one, h say, consists in drawing the ”probability-probability plot”:

teR— (1—h(t), 1—g(t),

with the convention that possible jumps are connected by line segments (in order to guarantee
the continuity of the curve). Equipped with this convention, this boils down to plot the graph of
the mapping

ROC), 4 : € (0,1) > ROC,, =1—goh '(1—a),

where I'"!(u) = inf{t € R: T'(t) > u} denotes the pseudo-inverse of any c.d.f. I'(t) on R. The
closer to the left upper corner of the unit square [0, 1], the larger the c.d.f. g is compared to h
in a stochastic sense. This approach is known as ROC analysis. The gold standard for evaluating
the ranking performance of a scoring function s is thus the ROC curve:

ROC‘S = ROCHS,GSa

where G5 and H denote the conditional c.d.f. of s(X) given Y = +1 and given ¥ = —1
respectively, i.e. the images of the class probability distributions F. and F_ by the mapping
s(z). Indeed, it follows from a standard Neyman-Pearson argument that the ROC curve ROC*
of strictly increasing transforms of n(x) is optimal with respect to this criterion in the sense that:

VYa e (0,1), ROC4(a) < ROC*(a),
for any scoring function s. We set S* = {T'on: T :(0,1) :(— R}. A summary quantity of this

functional criterion that is widely used in practice is the Area Under the ROC Curve (AUC in
short), given by:

1
AUC(s) = f ROC;(a) da,
a=0

for s € §. Beyond its scalar nature, an attractive property of this criterion lies in the fact that it
can be interpreted in a probabilistic manner, insofar as we have the relation: Vs € S,

1
AUC(s) =P{s(X) < s(X) | (Y,Y') = (=1, +1)} + iIP’{s(X) =s(X') | (V,Y') = (—=1,+1)}.
Denoting by (X;,Y;), ¢ € {1, 2}, independent copies of the pair (X,Y) and placing ourselves in
the situation where s(X)’s probability distribution is continuous, as observed in Clémengon et al.

(2008), we have AUC(s) =1 — Lp(s)/(2p(1 —p)), where

Lp(s) :=P{(s(X1) — 5(X2))(Y1 — ¥2)) < 0},
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is the ranking risk, the theoretical rate of discording pairs namely, that can be viewed as a
pairwise classification risk. Hence, bipartite ranking can be formulated as the problem of learning
a scoring function s that minimizes the ranking risk

dP dP

Li(s) = B | 55 (1Y) 35 (X3.19) < T{(5(X0) = sCX)Y = ¥9) <0}

Now, using Eq. (9.12) and the fact that n = p\I//(l —p+ p¥), we have:

1—p B
(I-a)d—p +p\I/(x))I[{y -

Therefore, it has been shown in Clémengon and Vayatis (2009) (see Corollary 5 therein) that for
any s* in §*,

= gﬂ{y =+1} + —1}.

dF, Gox
dF_ (X) = H g

(s*(X)) almost-surely.

For any s candidate, setting Us(z) = Hs/G4(s(z)), one can define:

Lop I{y =
(1—q@)(1—p+pYy(s(z)))

From this formula, it is the easy to see how an incremental use of the WERM could be implemented.

B, (z,y) = gﬂ{y =41} + ~1}.

e Start from an initial guess s for the optimal scoring functions (e.g. solve the empirical
ranking risk minimization problem ignoring the bias issue)

e Estimate ®; from the (X!, Y/)’s and the knowledge of p, observing that one is not confronted
with the curse of dlmenblonahty in this case

e Solve the Weighted Empirical Ranking Risk Minimization problem using the weight function

O (z1,y1)Ps(22,12),

which produces a new scoring function s and iterate.

Investigating the performance of such an incremental procedure will be the subject of future
research.

9.5 Numerical Experiments

This section illustrates the impact of reweighting by the likelihood ratio on classification perfor-
mances, as a special case of the general strategy presented in Section 9.2. A first simple illustration
on known probability distributions highlights the impact of the shapes of the distributions on the
importance of reweighting. This example illustrates in the infinite-sample case that separable or
almost separable data do not require reweighting, in contrast to noisy data. Since the distribution
shapes are unknown for real data, we infer that reweighting will have variable effectiveness,
depending on the dataset. We detail other experiments that illustrate the effectiveness of the
reweighting approach on real data. Precisely, we first use reweighting on a shift in the class
probabilities for the well-known dataset MNIST between training and testing. Secondly, uses the
structure of ImageNet to illustrate reweighting with a stratified population and strata distribution
bias or strata bias.

9.5.1 Importance of Reweighting for Simple Distributions

Introduce a random pair (X,Y) in [0,1] x {—1,4+1} where X | Y = +1 has for p.d.f. f;(z) and
X |Y = —1 has for p.d.f. f_(x), with, for some o > 0 and § > 0:

fo(@):=1+p)(1—-2)" and fi(z):=(1+a)z®
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As in Section 9.2, the train and test datasets have different class probabilities p’ and p for Y = +1.
The loss ¢ is defined as £(0, z) = I{(z — )y = 0} where 6 > 0 is a learned parameter. The true
risk can be explicitly calculated. For 6 > 0, we have:

Rp(0) = p'+t* + (1 —p)(1 —0)'*7,

and the optimal threshold 6 can be found by derivating the risk Rp(#). The derivative is zero
when 6 satisfies:

p(1+a)f® = (1—p)1+B)(1-6)~". (9.14)

Solving Eq. (9.14) is straightforward for well-chosen values of «, 8, which are detailed in Table 9.1.
The excess error £(p',p) = Rp(05,) — Rp(0)) for the diagonal entries of Table 9.1 are plotted in
Fig. 9.1, in the infinite sample case.

(a, B)
(0,00 (1/2,1/2) (1,1)  (2,2)
(1—p)? =
o 01 mase -7 Gias

Table 9.1: Optimal parameters 6* for different values of «, 3.
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Figure 9.1: Pdf’s and values of the excess risk £(p’, p) for different values of «, .

The results of Fig. 9.1 show that the optimum for the train distribution is significantly different
from the optimum for the test distribution when the problem involves Bayes noise.

9.5.2 Generalities on Real Data Experiments

Strategy to induce bias in balanced datasets. In the two real data experiments below,
the same strategy is used to induce class distribution bias or strata bias. Since both experiments
involve a small test dataset, it is kept intact, while we discard elements of the train dataset to
induce bias between the train and test datasets. The bias is parameterized by a single parameter
v, such that when ~ is close to one, there is little strata or class bias, while when ~ approaches 0,
bias is extreme.

The bias we induce is inspired by a power law, which is often used to model unequal distributions.
Each value of a modality, i.e. a possible value of the stratum or class of an instance, is given by
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one of the values of the power law at random. Formally, the target train distribution {p;ﬁ.}le
over a modality S € {1,..., K}, is defined for all 1 < k < K as:

_1K/2|

;- v % pg
Pk = [K2]
K T o (k)
PR Dk
where o is a random permutation in {1,..., K}.

To generate a train dataset with modality distribution {p}}& |, we sample instances from the
original train data set Df, = {(X],Y/,S;)}7?_;, where Y is the class, S; is the modality. For the
MNIST experiment, S, =Y/, while for Section 8.4, the value S} is the stratum of the instance 4.
The output of the train dataset is noted as D,,, see Algorithm 1 for the detailed algorithm of the
train dataset generation.

Algorithm 1 Biased training dataset generation

Input: D; = {(lea}/;laszl) =1 {p;c}?;l
Output: D,
D—y # Initialize the result index set.
for k=1,...,K do
I {i|1<i<n,S, =k}  # Count the candidates for each modality.
end for
Msamp — Min(#71, ..., #7Zk)
while mgamp > 0 do
mi,...,Mg — M(Mgamp; D1, - - - s PKc) # M is the multinomial law.
end while
for k=1,...,K do
Dy, — RandSet(myg, Zy) # RandSel(n, X) is a random subset of n elements of X.
Ty <« Ii;\Dy,
end for
Msamp < min (#Il, S #IK)

K
D—Du( U Di
k=1
Dy, — {(X],Y/,5]) | ie D}

Return D,

Models Both MNIST and ImageNet experiments compare two models: a linear model and a
multilayer perceptron (MLP) with one hidden layer. Given a classification problem of input x of
dimension d with K classes, precisely with d = 784, K = 10 for MNIST and d = 2048, K = 1000
for ImageNet data, a linear model simply learns the weights matrix W e R%*X and the bias
vector b € RE and outputs logits I = W'z + b. On the other hand, the MLP has a hidden
layer of dimension h = |(d + K)/2| and learns the weights matrices W; € R4" W, € {h, K} and
bias vectors b; € R", by € RE and outputs logits | = W, h(W, 2 + by) + by where h is the ReL.U
function, i.e. h:x — max(z,0). The number of parameters for each dataset and each model is
summarized in Table 9.2.

Model
Database Linear MLP
MNIST 7,850 315,625
ImageNet 2,049,000 4,647,676

Table 9.2: Number of parameters for each model.

The weight decay or 12 penalization for the linear model and MLP model are written, respectively:

1 1 1
PZgHWll and 77:§||W1||+§||W1H-
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Experiment MNIST - Section 9.5.3 ImageNet - Section 8.4
Net weights std init og 0.01 0.01

Weight decay A Unif 0.01 0.002

Weight decay A Strata X 0.003

Weight decay A Class 0.01 0.003

Weight decay A Sym data X 0.001
Learning rate n 0.01 0.001
Momentum -y 0.9 0.9

Batch size B 1,000 1,000

MLP hidden layer size h 397 1,524

Table 9.3: Parameters of the MNIST and ImageNet experiments - Section 9.5.3 and Section 8.4.

Cost function The cost function is the Softmax Cross-Entropy (SCE), which is the most used
classification loss in deep learning. Specifically, given logits [ = (I1,...,lx) € R¥ the softmax
function is v : R¥ — [0,1]% with v = (y1,...,7k) and for all k € {1,..., K},

_ exp(lg)
2o exp(ly)

Given an instance with logits [ and ground truth class value y, the expression of the softmax

cross-entropy ¢(l,y) is

D=

c(ly) = ), Hy = k}log (v(1)) .-

k=1

The loss that is reweighted depending on the cases as described in Section 8.3 is this quantity
¢(l,y). The loss on the test set is never reweighted, since the test set is the target distribution. The
weights and bias of the model that yield the logits are tuned using backpropagation on this loss
averaged on random batches of B elements of the training data summed with the regularization
term X - P where A is a hyperparameter that controls the strength of the regularization.

Preprocessing, optimization, parameters The images of ILSVRC were encoded using the
implementation of ResNet50 provided by the library keras!, see Chollet et al. (2015), by taking
the flattened output of the last convolutional layer.

Optimization is performed using a momentum batch gradient descent algorithm, which updates
the parameters 0; at timestep ¢ with an update vector v; by performing the following operations:

v = yvi—1 + nVC(0i—1),

Op = 0p—1 — vy,

where 7 is the step size and + is the momentum, as explained in Ruder (2016).

The parameters of the learning processes are summarized in Table 9.3. The weight decay
parameters A were cross-validated by trying values on a logarithmic scale, e.g. for ImageNet
{107%,1073,1072,107%,1} and then trying more fine-grained values between the two best results,
e.g. for ImageNet 1072 was best and 102 was second best so we tried {0.002,0.003,0.004,0.005}.
The standard deviation initialization of the weights was chosen by trial-and-error to avoid
overflows. The step size was fixed after trying different values to have fast convergence while
keeping good convergence properties.

9.5.3 Classes Bias Experiment for MINIST

The impact of the bias correction in the multi-class supervised learning setting described in
Section 2 is illustrated on a widely used dataset for studying classification tasks: the MNIST
dataset.

Thttps://keras.io/applications/



163 9.5. Numerical Experiments

The MNIST dataset is composed of images X € R of digits and labels being the value of the
digits. In our experiment, we learn to predict the value of the digit so we have K = 10 classes
corresponding to digits between 0 and 9. The dataset contains 60,000 images for training and
10,000 images for testing, all equally distributed within the classes. There is therefore no class
bias between train and test samples in the original dataset.

Bias between classes is induced using the power law strategy described above. We deal with the
classification task associated to (X,Y) with a linear model or a MLP with one hidden layer that
optimizes the softmax cross-entropy (SCE) using momentum gradient descent. We compare the
uniform weighting of each instance in the train set (corresponding to the case where there is no
reweighting described in Eq. (9.2)) with the reweighting of each instance using the proportion of
each label Y for the train and test datasets as described in Eq. (9.7).

The optimization dynamics are summarized in Fig. 9.3. We report the median over 100 runs
of these values for the test set and a fixed random sample of the train set. For the test set, we
represent 95% confidence-intervals in a lighter tone. The x-axis corresponds to the number of
iterations of the learning process.
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Figure 9.3: Dynamics for the class reweighting experiment
with MNIST.

For the uniform weights, we see that the misclassification rate is pretty low for the train set, but
poor for the test set. By reweighting the instances, we see that we favor low error over the test
set, which gives a miss probability reduced by half.

9.5.4 Strata Reweighting Experiments for ImageNet

We focus here on the learning from biased stratified data setting introduced in Section 9.3.1 by
leveraging the ImageNet Large Scale Visual Recognition Challenge (ILSVRC); a well-known
benchmark for the image classification task, see Russakovsky et al. (2014) for more details.

The challenge consists in learning a classifier from 1.3 million training images spread out over
1,000 classes. Performance is evaluated using the validation dataset of 50,000 images of ILSVRC
as our test dataset. ImageNet is an image database organized according to the WordNet hierarchy,
which groups nouns in sets of related words called synsets. In that context, images are examples
of very precise nouns, e.g. flamingo, which are contained in a larger synset, e.g. bird.
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categories # synset  # images per synset Total # images
amphibian 94 591 56K
animal 3822 732 2799K
appliance 51 1164 59K
bird 856 949 812K
covering 946 819 774K
device 2385 675 1610K
fabric 262 690 181K
fish 566 494 280K
flower 462 735 339K
food 1495 670 1001K
fruit 309 607 188K
fungus 303 453 137K
furniture 187 1043 195K
geological formation 151 838 127K
invertebrate 728 573 417K
mammal 1138 821 934K
musical instrument 157 891 140K
plant 1666 600 999K
reptile 268 707 190K
sport 166 1207 200K
structure 1239 763 946K
tool 316 551 174K
tree 993 568 564K
utensil 86 912 78K
vegetable 176 764 135K
vehicle 481 778 374K
person 2035 468 952K

Table 9.4: Original categories used to construct the strata for the experiment of Section 8.4.

The impact of reweighting in presence of strata bias is illustrated on the ILSVRC classification
problem with broad significance synsets for strata. We detail the data preprocessing necessary to
assign strata to the ILSVRC data. These were constructed using a list of 27 high-level categories
found on the ImageNet website? and copied in Table 9.4. Each ILSVRC image has a ground
truth low level synset, either from the name of the training instance, or in the validation textfile
for the validation dataset, that is provided by the ImageNet website. The ImageNet API 3
provides the hierarchy of synsets in the form of is-a relationships, e.g. a flamingo is a bird. Using
this information, for each synset in the validation and training database, we gathered all of its
ancestors in the hierarchy that were in the table Table 9.4. Most of the synsets had only one
ancestor, which then accounts for one stratum. Some of the synsets had no ancestors, or even
several ancestors in the table, which accounts in for extra strata, either a no-category stratum or
a strata composed of the union of several ancestors. The final distribution of the dataset over
the created strata is summarized by Figure 9.4. Observe the presence of a no_strata stratum and
of unions of two high-level synsets strata, e.g. n00015388-n01905661. A definition provided by
the API of each of the synsets involved in the strata is given in Table 9.5.

To do this, we encode the data using deep neural networks. Specifically our encoding is the
flattened output of the last convolutional layer of the network ResNet50 introduced in He et al.
(2016). It was trained for classification on the training dataset of ILSVRC. The encodings
Xi,..., X, belong to a 2,048-dimensional space.

A total of 33 strata are derived from a list of high-level categories provided by ImageNet*. By
default, strata probabilities py and p), for 1 < k < K are equivalent between training and testing
datasets, meaning that reweighting by ® would have little to no effect. Since our testing data

2http://wuw.image-net.org/about-stats
Shttp://image-net.org/download-API
4http://www.image-net.org/about-stats
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Figure 9.4: Distribution of the ImageNet train dataset over the created strata which definitions
are given in Table 9.5.

Model Reweighting miss rate top-5 error

N Train ~
0251 pmm Test Unif. =1  0.344 0.130
0204 | Linear  Strata ® 0.329 0.120
>
3 0.15 ]| Class 0.328 0.119
QO
° {0 bias 297 9
€ ol | No bias 0.297 0.102
| | | [ ] Unif. =1  0.371 0.143
0.054 14 [ -
MLP Strata ® 0.364 0.138
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Strata Class ® 0.363 0.138
No bias 0.316 0.111

Figure 9.5: Comparison of pg’s
and p;’ for the strata of the Ima-  Table 9.6: Table of results for the strata reweighting ex-
geNet experiment. periment with ImageNet.

is the validation data of ILSVRC, we have around 25 times more training than testing data.
Introducing a strata bias parameter 0 < v < 1, we set the strata train probabilities such that
Pl = A1 -LE/2) Ry, before renormalization and remove train instances so that the train set has
the right distribution over strata. When + is close to one, there is little to no strata bias. In
contrast, when ~ approaches 0, strata bias is extreme.

The models used are a linear model and a multilayer perceptron (MLP) with one hidden layer. We
report significantly better performance when reweighting using the strata information, compared
to the case where the strata information is ignored, see Table 9.6. For comparison, we added two
reference experiments: one which reweights the train instances by the class probabilities, which
we do not know in a stratified population experiment, and one with more data and no strata bias
because it uses all of the ILSVRC train data. The dynamics of the learning process can be found
in Fig. 9.6 for the linear model and in Fig. 9.7 for the MLP model. The dominance of the linear
model over the MLP can be justified by the much higher number of parameters to estimate for
the MLP.

9.6 Conclusion

In this chapter, we have considered specific transfer learning problems, where the distribution of
the test data P differs from that of the training data, P’, and is absolutely continuous with respect
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Strata name Definition

n00015388 n01861778 animal, animate being, beast (...) mammal, mammalian
no strata

n03183080 device
n03122748 covering
n04524313 vehicle

n00015388 101905661 animal, animate being, beast (...) invertebrate
n00015388 101503061 animal, animate being, beast (...) bird

n04341686 structure, construction

n00015388 101661091 animal, animate being, beast (...) reptile, reptilian
n03183080 103800933 device musical instrument, instrument
103405725 furniture, piece of furniture, (...)

n13134947 fruit

n00015388 n02512053 animal, animate being, beast (...) fish

n07707451 vegetable, veggie, veg

n04451818 tool

n02729837 appliance

n09287968 geological formation, formation

n04285146 sports equipment

n00015388 n01627424 animal, animate being, beast (...) amphibian
n07566340 foodstuff, food product

n12992868 fungus

n04516672 utensil

n03309808 fabric, cloth, material, textile

100015388 animal, animate being, beast (...)

n00017222 1011669921 plant, flora, plant life flower
n02729837 n03183080 appliance device
n03183080 104451818 device tool

n03122748 103183080 covering device
n04285146 104524313 sports equipment vehicle
n04341686 n04524313 structure, construction vehicle
n07566340 n07707451 foodstuff, food product vegetable, veggie, veg
n03183080 104524313 device vehicle

Table 9.5: Definitions of the strata created for the experiments in Section 8.4, which frequencies
are given in Fig. 9.4.

to the latter. This setup encompasses many situations in practice, where the data acquisition
process is not perfectly controlled. In this situation, a simple change of measure shows that
the target risk may be viewed as the expectation of a weighted version of the basic empirical
risk, with ideal weights given by the importance function ® = dP/dP’, unknown in practice.
Throughout this chapter, we have shown that, in statistical learning problems corresponding
to a wide variety of practical applications, these ideal weights can be replaced by statistical
versions based solely on the training data combined with very simple information about the
target distribution. The generalization capacity of rules learned from biased training data by
minimization of the weighted empirical risk has been established, with learning bounds. These
theoretical results are also illustrated with several numerical experiments.

While some biases can be corrected by addressing the representativeness of data, some have
other intrisic reasons. For example, in many settings, differentials in performance are observed
even though representativeness is not an issue, such as with respect to age in facial recognition.
In those type of situations, one may wish to learn a model that corrects for those differentials
with explicit constraints, while simultaneously performing the usual optimization for predictive
performance. It is the subject of fairness in machine learning, which we address in the next
chapter in the context of fairness in bipartite ranking.
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Figure 9.6: Dynamics for the linear model for the strata reweighting experiment with ImageNet.
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Chapter 10

Learning Fair Scoring Functions

Summary: In Part II, we framed similarity learning as a scoring problem on
the product space, which fits with the usual evaluation of the 1:1 biometric
identification problem. In many instances, the simple reweighting procedure
of Chapter 9 does not suffices to correct for discrepancies in error rates
between sensitive groups. Facial recognition practitioners have confirmed the
importance of those discrepancies (Chapter 1). This concern resonates with
the idea of fairness, which has received a lot of attention in classification, but
not so much in the important problem of bipartite scoring/ranking. However,
bipartite ranking/scoring is a preliminary step to our formalization of 1:1
verification (Part IT). In this chapter, we propose a flexible approach to group
fairness for bipartite ranking, the standard learning task of scoring binary
labeled data. We argue that the functional nature of the ROC curve, the gold
standard measure of ranking performance in this context, leads to several ways
of formulating fairness constraints. We introduce general classes of fairness
conditions based on AUC and ROC curves, and establish generalization
bounds for scoring functions learned under such constraints. Our analysis is in
the form of finite-sample bounds (Chapter 2) and is supported by usual results
on bipartite ranking (Chapter 3) and U-statistics (Chapter 4). Beyond the
theoretical formulation and results, we design practical learning algorithms
and illustrate our approach with numerical experiments on real and synthetic
data.

10.1 Introduction

With the availability of data at ever finer granularity through the Internet-of-Things and the
development of technological bricks to efficiently store and process this data, the infatuation with
machine learning and artificial intelligence is spreading to nearly all fields (science, transportation,
energy, medicine, security, banking, insurance, commerce, etc.). Expectations are high. AT is
supposed to allow for the development of personalized medicine that will adapt a treatment to
the patient’s genetic traits. Autonomous vehicles will be safer and be in service for longer. There
is no denying the opportunities, and we can rightfully hope for an increasing number of successful
deployments in the near future. However, Al will keep its promises only if certain issues are
addressed. In particular, machine learning systems that make significant decisions for humans,
regarding for instance credit lending in the banking sector (Chen, 2018), diagnosis in medicine
(Deo, 2015) or recidivism prediction in criminal justice (Rudin et al., 2018), should guarantee
that they do not penalize certain groups of individuals. In the specific case of facial recognition,
practitioners and governmental agencies have recorded differences in accuracy between ethnicities
(Grother and Ngan, 2019), which is expected to penalize people of color.

Hence, stimulated by the societal demand, notions of fairness in machine learning and guarantees
that they can be fulfilled by decision-making models trained under appropriate constraints have
recently been the subject of a good deal of attention in the literature, see e.g. Dwork et al. (2012)
or Kleinberg et al. (2017) among others. Fairness constraints are generally modeled by means of a

169
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(qualitative) sensitive variable, indicating membership to a certain group (e.g., ethnicity, gender).
The vast majority of the work dedicated to algorithmic fairness in machine learning focuses on
binary classification. In this context, fairness constraints force the classifiers to have the same
true positive rate (or false positive rate) across the sensitive groups. For instance, Hardt et al.
(2016) and Pleiss et al. (2017) propose to modify a pre-trained classifier in order to fulfill such
constraints without deteriorating classification performance. Other work incorporates fairness
constraints in the learning stage (see e.g., Agarwal et al. (2018); Woodworth et al. (2017); Zafar
et al. (2017a,b, 2019); Menon and Williamson (2018); Bechavod and Ligett (2017); Williamson
and Menon (2019)). In addition to algorithms, statistical guarantees (in the form of generalization
bounds) are crucial for fair machine learning, as they ensure that the desired fairness will be met
at deployment. Such learning guarantees have been established in Donini et al. (2018) for the
case of fair classification.

The present chapter is also devoted to algorithmic fairness, but for a different problem: namely,
learning scoring functions from binary labeled data. This statistical learning problem, known
as bipartite ranking, is of considerable importance in applications. It covers in particular tasks
such as credit scoring in banking, pathology scoring in medicine or recidivism scoring in criminal
justice, for which fairness requirements are a major concern (Kallus and Zhou, 2019). While it
can be formulated in the same probabilistic framework as binary classification, bipartite ranking
is not a local learning problem: the goal is not to guess whether a binary label Y is positive or
negative from an input observation X but to rank any collection of observations Xi, ..., X, by
means of a scoring function s : X — R so that observations with positive labels are ranked higher
with large probability. Due to the global nature of the task, evaluating the performance is itself
a challenge. The gold standard measure, the ROC curve, is functional: it is the PP-plot of the
false positive rate vs the true positive rate (the higher the curve, the more accurate the ranking
induced by s). Sup-norm optimization of the ROC curve has been investigated in Clémengon
and Vayatis (2009, 2010), while most of the literature focuses on the maximization of scalar
summaries of the ROC curve such as the AUC criterion (Agarwal et al., 2005; Clémengon et al.,
2008; Zhao et al., 2011) or alternative measures (Rudin, 2006; Clémengon and Vayatis, 2007;
Menon and Williamson, 2016).

We propose a thorough study of fairness in bipartite ranking, where the goal is to guarantee
that sensitive variables have little impact on the rankings induced by a scoring function. Similar
to ranking performance, there are various possible options to measure the fairness of a scoring
function. We start by introducing a general family of AUC-based fairness constraints, which
encompasses recently proposed notions (Borkan et al., 2019; Beutel et al., 2019; Kallus and Zhou,
2019) in a unified framework and enables the design of generic methods and generalization bounds.
Then, we argue that the AUC is not always appropriate to characterize fairness as two ROC
curves with very different shapes may have the same AUC. This motivates our design of richer
definitions of fairness for scoring functions related to the ROC curves themselves. Crucially, this
novel functional view of fairness has strong implications for fair classification: classifiers obtained
by thresholding such fair scoring functions approximately satisfy definitions of classification
fairness for a wide range of thresholds. We establish the first generalization bounds for learning
fair scoring functions under both AUC and ROC-based fairness constraints, following in the
footsteps of Donini et al. (2018) for fair classification. Due to the complex nature of the ranking
measures, our proof techniques largely differ from Donini et al. (2018) and require non standard
technical tools (e.g. to control deviations of ratios of U-statistics). Beyond our theoretical
analysis, we propose efficient training algorithms based on gradient descent and illustrate the
practical relevance of our approach on synthetic and real datasets.

The chapter is organized as follows. Section 10.2 reviews bipartite ranking and fairness for
ranking. In Section 10.3, we study AUC-based fairness constraints. We then analyze richer
ROC-based constraints in Section 10.4. Section 10.5 presents numerical experiments and we
conclude in Section 10.6.

10.2 Background and Related Work

In this section, we introduce the main concepts involved in the subsequent analysis.
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Probabilistic framework. We place ourselves in the same binary classification setting as
Chapter 2 and Chapter 2, thus introduce a random pair (X,Y) characterized by the triplet
(p, H, Q) or the pair (F,n) (see Section 2.2 in Chapter 2). In the context of fairness, we consider
a third random variable Z which denotes the sensitive attribute taking values in {0,1}. The pair
(X,Y) is said to belong to salient group 0 (resp. 1) when Z = 0 (resp. Z = 1). The distribution of
the triplet (X, Y, Z) can be expressed as a mixture of the distributions of X,Y|Z = z. Following
the conventions described in Chapter 2, we introduce the quantities p,, G, H®) as well as
F®) n(2) | For instance, pg = P{Y = +1|Z = 0} and the distribution of X|Y = +1,Z = 0 is
written G0, i.e. for Ac X, GO (A) = P{X € A|Y = +1,Z = 0}. We denote the probability of
belonging to group z by ¢, := P{Z = z}, with ¢o = 1 — ¢1.

10.2.1 Bipartite Ranking

The goal of bipartite ranking is to learn an order relationship on X" for which positive instances are
ranked higher than negative ones with high probability. This order is defined by transporting the
natural order on the real line to the feature space through a scoring function s : X — R. Given
any distribution F' over X and a scoring function s, we write as Fy the cumulative distribution
function of s(X) when X follows F'. Additionally, we introduce Hs and G, defined in Section 3.2
of Chapter 3.

ROC analysis. In bipartite ranking, one focuses on the ability of the scoring function s to separate
positive from negative data. This is reflected by ROCyy, . (see Eq. (3.1) of Chapter 3), which
gives the false negative rate vs. false positive rate of binary classifiers gs ¢ :  — 2-I{s(z) > ¢t} — 1
obtained by thresholding s at all possible thresholds ¢t € R. The global summary AUCy, ¢, (see
Definition 3.2 of Chapter 3) serves as a standard performance measure (Clémengon et al., 2008).

ROC curves can more generally be used to visualize the dissimilarity between two real-valued
distributions in many applications, e.g. anomaly detection, medical diagnosis, information
retrieval. We present a more general definition in Definition 10.1 below.

Definition 10.1. (ROC curve) Let g and h be two cumulative distribution functions on R.
The ROC curve related to the distributions g(dt) and h(dt) is the graph of the mapping ROCy, 4 :
ae[0,1] = 1—goh (1 —a). When g(dt) and h(dt) are continuous, it can alternatively be
defined as the parametric curve t € R — (1 — h(t),1 — g(t)).

The L; distance of ROCy 4 to the diagonal conveniently quantifies the deviation from the
homogeneous case, leading to a generalization of the classic area under the ROC curve (AUC)
criterion,

AUCy, 4 := SROC;L7g(a)da =P{S> 5"} + %P{S — 5,
where S and S’ denote independent random variables, drawn from h(dt) and g(dt) respectively.

Empirical estimates. In practice, the scoring function s is learned based on a training set
{(X;,Y:)}, of n i.i.d. copies of the random pair (X,Y). Let ny and n_ be the number of
positive and negative data points respectively, which are sums of i.i.d. random (indicator)
variables. We introduce by é’s and ﬁs the empirical counterparts of G5 and H, defined formally
in Section 3.2.3 of Chapter 3. For any two distributions F, I’ over R, we denote the empirical
counterparts of AUCE r» and ROCg g by:

AUCpp = AUC; 5 and ROCpp(-) := ROC 5 (),

respectively. In particular, considering AUC H,.c, defined in Eq. (3.2) of Chapter 3, we have
AUCq, ¢, = AUCH# & .

s

Empirical risk minimization for bipartite ranking typically consists in maximizing A/U\CHS,GS
over a class of scoring functions (see e.g. Clémengon et al. (2008); Zhao et al. (2011)).

10.2.2 Fairness in Binary Classification

In binary classification, the goal is to learn a mapping function g : X — {—1, +1} that predicts
the output label Y from the input random variable X as accurately as possible as measured by a
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loss function L(g). One common example is the probability of error L(g) = P{g(X) # Y}, which
is minimized by the Bayes classifier g*, where g*(z) = 2I{n(x) > 1/2} — 1. Any classifier g can
be defined by its unique acceptance set A, := {z € X | g(x) = +1} < X.

Existing notions of fairness for binary classification (see Zafar et al., 2019, for a detailed treatment)
aim to ensure that g makes similar predictions (or errors) for the two groups. We mention here
the common fairness definitions that depend on the ground truth label Y. Parity in mistreatment
requires that the proportion of errors is the same for the two groups:

MO(g) = MM (g), (10.1)

where M) (g) := P{g(X) # Y | Z = z}. While this requirement is natural, it considers that all
errors are equal: in particular, one can have a high false positive rate (FPR) H(A,) for one
group and a high false negative rate (FNR) G(®)(A,) for the other. This can be considered unfair
when acceptance is an advantage, e.g. for job applications. A solution to this issue is to consider
parity in false positive rates, which writes:

HO(4,) = HV(4,), (10.2)
as well as parity in false negative rates, which writes:

G4, =GW(4,). (10.3)
We refer to Zafar et al. (2019) for a detailed treatment of fairness definitions for classification.

Remark 10.2 (Connection to bipartite ranking). A score function s : X — R induces an infinite
collection of binary classifiers {gs(x) := sign(s(x) — t)}ier. While one could fiz a threshold t € R
and try to enforce fairness on gs:, we are interested in notions of fairness for the score function
itself, independently of a particular choice of threshold.

10.2.3 Fairness in Ranking

Fairness for rankings has only recently become a research topic of interest, and most of the work
originates from the informational retrieval and recommender systems communities. Given a set
of items with known relevance scores, they aim to extract a (partial) ranking that balances utility
and notions of fairness at the group or individual level, or through a notion of exposure over
several queries (Zehlike et al., 2017; Celis et al., 2018; Biega et al., 2018; Singh and Joachims,
2018). Singh and Joachims (2019) and Beutel et al. (2019) extend the above work to the learning
to rank framework, where the task is to learn relevance scores and ranking policies from a certain
number of observed queries that consist of query-item features and item relevance scores (which
are typically not binary). This framework is fundamentally different from the bipartite ranking
setting considered here.

AUC constraints. In a setting closer to ours, Kallus and Zhou (2019) introduces measures to
quantify the fairness of a known scoring function on binary labeled data (they do not address
learning). Similar definitions of fairness are also considered by Beutel et al. (2019), and by
Borkan et al. (2019) in a classification context. Below, we present these fairness measures in the
unified form of equalities between two AUCs. In general, the AUC can be seen as a measure of
homogeneity between distributions (Clémencon et al., 2009).

Introduce G (resp. HS(Z)) as the c.d.f. of the score on the positives (resp. negatives) of group
2e{0,1}, ie. GP(t) = GO (s(X) < t) and HP (t) = H®(s(X) < t), for any t € R. Both
Beutel et al. (2019) and Borkan et al. (2019) proposed the following fairness constraints:

AUCHSJ),G&O) = AUCHS),GS)’ (10.4) AUCHS,GS)) = AUCHS,GQ)' (10.5)

Eq. (10.4) is referred to as intra-group pairwise or subgroup AUC fairness and Eq. (10.5) as
pairwise accuracy Beutel et al. (2019) or Background Positive Subgroup Negative (BNSP) AUC
fairness Borkan et al. (2019). Eq. (10.4) requires the ranking performance to be equal within
groups, which is relevant for instance in applications where groups are ranked separately (e.g.,
candidates for two types of jobs). Eq. (10.5) enforces that positive instances from either group
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have the same probability of being ranked higher than a negative example, and can be seen as the
ranking counterpart of parity in false negative rates in binary classification Hardt et al. (2016),
see Eq. (10.3). Borkan et al. (2019) and Kallus and Zhou (2019) also consider:

AUCH§0)7GS = AUCH§1)7GS, (10.6) AUCGS,GS’) = AUCGS,GS" (10.7)

The work of Borkan et al. (2019) refers to Eq. (10.6) as Backgroup Positive Subgroup Negative
(BPSN) AUC, and can be seen as the ranking counterpart of parity in false positive rates in
classification (Hardt et al., 2016), see Eq. (10.2). The Average Equality Gap (AEG) (Borkan
et al., 2019) can be written as AUC(Gj, ng)) —1/2 for z € {0,1}. Eq. (10.7) thus corresponds to
an AEG of zero, i.e. the scores of the positives of any group are not stochastically larger than
those of the other. Beutel et al. (2019) and Kallus and Zhou (2019) also define the inter-group
pairwise fairness or kAUC parity:

AUC 1 = AUCH(1) a©; (10.8)

b2 i)
which imposes that the positives of a group can be distinguished from the negatives of the other
group as effectively for both groups. Below, we generalize these AUC-based definitions and
derive generalization bounds and algorithms for learning scoring functions under such fairness
constraints.

10.3 Fair Scoring via AUC Constraints

In this section, we give a thorough treatment of the problem of statistical learning of scoring
functions under AUC-based fairness constraints. First, we introduce a general family of AUC-
based fairness definitions which encompasses those presented in Section 10.2.3. We then derive
the first generalization bounds for the bipartite ranking problem under such AUC-based fairness
constraints. Finally, we propose a practical algorithm to learn such fair scoring functions.

10.3.1 A Family of AUC-based Fairness Definitions

Many sensible fairness definitions can be expressed in terms of the AUC between two distributions.
We now introduce a framework to formulate AUC-based fairness constraints as a linear combi-
nation of 5 elementary fairness constraints, and prove its generality. Given a scoring function
s, we introduce the vector C(s) = (C1(s),...,Cs(s))", where the Cy(s)’s, [ € {1,...,5}, are
elementary fairness measurements. More precisely, the value of |Cy(s)| (resp. |C2(s)|) quantifies
the resemblance of the distribution of the negatives (resp. positives) between the two sensitive
attributes:

Ci(s) = AUC 1/2,  Cafs) = 1/2 — AUC

Hé(,o) Hé(,l) - Ggo) GE})?

while Cs3(s), Ca(s) and Cs(s) measure the difference in ability of a score to discriminate between
positives and negatives for any two pairs of sensitive attributes:

03(5) = AUC 04(5) = AUC — AUC

— AUC

H£0)7G‘20) 7AUCH£O)7G‘(51) 5
Cs(s) = AUC

7O g HWY GO

oY, G Y GO
The family of fairness constraints we consider is then the set of linear combinations of the
Cl(s) =0:

Cr(s): TTC(s) =37 [iCi(s) =0, withD = (Ty,...,T5)7 € R. (10.9)

Theorem 10.3 (Informal). The family (Cr(s))rers compactly captures all relevant AUC-based
fairness constraints, including (but not limited to) those proposed in previous work.

Now, we detail the mathematical derivation of the formal statement of this result and give
examples of new fairness constraints that can be expressed with Eq. (10.9). We will show that
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the family (Cr(s))rers covers a wide array of possible fairness constraints in the form of equalities
of the AUC’s between mixtures of the distributions D(s), with:

D(s):= (H®, HV, g© ¢M)T,

Denote by (e, ea, €3, e4) the canonical basis of R*, as well as the constant vector 1 = Zi=1 ek
Introducing the probability vectors ., 3,a/, 3’ € P where P = {v | ve RY,1Tv = 1}, we define
the following constraint:

AUCO(TD(S),BTD(S) = AUC(X'TD(S),B'TD(S) . (1010)

Theorem 10.4 below formalizes Theorem 10.3, and rules out AUC constraints that are not satisfied
when H(® = HM and G = G, Such undesirable fairness constraints are those which actually
give an advantage to one of the groups, such as AUCGEO)G(:) = 2AUCy, g, — 1 which is a special
case of Eq. (10.10) that requires the scores of the positives of group 1 to be higher than those of
group 0.

Theorem 10.4. The following propositions are equivalent:

1. Eq. (10.10) is satisfied for any measurable scoring function s when H®) = H® GO = g
and F(n(X) =p) <1,

2. Eq. (10.10) is equivalent to Cr(s) for some T’ € R®,
3. (e1te) [(a—a)—(B=p)]=0

Proof. Denote D(s) = (D1(s), Da(s), D3(s), D4(s))" := (HS(O),HS(D,G(SO),GED)T. For any (i,7) €
{1,...,4}2, we introduce the notation:

AUCp,,p, : s = AUCp, (s),p;(s)-

Introduce a function M such that M (s) € R*** for any s : X — R, and for any (i,7) € {1,...,4},
the (i,7) coordinate of M writes:

1
Ml’j = AUCDi’Dj - 5

First note that, for any s, M(s) is antisymmetric i.e. M;;(s) = —M, ;(s) for any (i,5) €
{1,...,4}2. Then, with (a, 8) € P?, we have that:

1 1
AUCQTDﬁTD = O[TMB—F 5 = <M,Oéﬁ—r>+ 5,

where (M, M)y = tr(M T M’) is the standard dot product between matrices. Eq. (10.10) writes
as:

(M,afT —a’8T) =0. (10.11)

Case of a = ' and B — ' = §(e; — ¢;j).
Consider the specific case where o = o and  — ' = §(e; — e;) with i # j and 6 # 0, then

(M,a(B-p)") = 6K” ;

where:
4
K = (M, a(e; — )T Z [AUCp,,p, — AUCp, p, ]

= (ai + aj) [2 — AUCD,;,Dj:| + Z Qg [AUCDk,Di — AUCDk,Dj] .
k¢{ig}
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(@) _

The preceding definition implies that K —Kj(zf). Using Zszl a = 0, we can express every

K Z(O;) as a linear combinations of the C)’s plus a remainder, precisely:

— (a1 + az) C1 — a3(Cs + Cy) — aya(Cy + Cs),

— AUCDI,D3 + 042(—01 +C5+ 04) + a4(—02 + 03),

+ a2(—01 +Cy + 05) + ag(CQ —C3 — 04),

— AUCD%D3 + a1(01 — 03 — 04) + 014(702 + 05),

1
§ — AUCD27D4

K(a) (043 + a4) Cy + a1C3 + a2 Cs.

+ 041(01 —Cy — 05) + 043(02 — 05),

1
(2
<1 — AUCp, p
2 1,D4
(1

N—— — N

Hence, it suffices that {i,j} = {1,2} or {i,j} = {3,4} for Eq. (10.11) to be equivalent to Cr for
some I' € R?.

Case of a = o'.

Any of the § — ' writes as a positive linear combination of e; — e; with i # j, since:

1
B=B8'=7, (Bi+5)(ei—e)),

i#]
which means that, since Kz((;) = fK](?):
(M,a(B-B)T) = i (B + By K = i (18— B 18— 85]) K. (10.12)
i#] i<j

Note that any linear combination of the Kg), Kﬁ), K(%) and K 4)
Y K - K 4y KEY - K,

where v € R* with 17+ = 0 writes as a weighted sum of the C; for [ € {1,...,5}.

Hence, it suffices that 81 + 82 = 81 + 85 for Eq. (10.12) to be equivalent to some Cr for some
I'e R5.

General case.

Note that, using the antisymmetry of M and Eq. (10.12):

(M, afT =BTy = (M, (B~ B)T) + (M, (a— )BT,
—<Ma</3 BT — (M, B (= )T,
[([ —[8i = B}]) Kz'(,?) — ([ew — o] = [ — &) Kz(?)] '

Hence, it suffices that (e; +e2) " [(a —a’) — (8 — )] = 0 for Eq. (10.11) to be equivalent to some
Cr for some I' € R5.

Conclusion.
We denote the three propositions of Theorem 10.4 as P;, P> and Pj.
Assume that H©) = HW GO0 = GM and F(n(X) = 1/2) < 1, then C; = 0 for any l € {1,...,5},

which gives:

(M(s),aB" —a/8T)
<;—AUCHS,GS) 3oNY —[8; = Bj1) = (lei — o] = [ = 1) |

1€{1,2} je{3,4}

) (e1 +e2) [(a—a) = (85

I

Il
A/~ B
N —

|

>

()

Q

jau

Q
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Table 10.1: Value of I' = (I';)7_, for all of the AUC-based fairness constraints in the chapter for
the general formulation of Eq. (10.9).

Eq. ry TIg I's Iy Ts
1 i 1
P Wy 3 o)
a0 (1—p, a1 (1p
(105) 0 o wf-ra) o  alze)
1
(10.6) 0 0 % 1 fggl
(10.7) 0 1 0 0 0
(10.8) 0 0 0 1 0
(10.13) 0 po 1—po 0 0

It is known that:

AUCH, ¢, = f In(z) — () |dF (@)dF ('),

1 n 1
2 4p(1-p)
which means that AUCy

is true.

Assume P is true, then AUCy, ¢, > 1/2, hence (e; + €2) [(a — /) — (B8 — 8')] = 0 because
Eq. (10.11) is verified for 7, and we have shown P, = Ps.

@, = 1/2 implies that 7(X) = p almost surely (a.s.), and the converse

7

Assume P is true, then (M, a3 " —o/ﬁ/T> writes as a linear combination of the Cy’s, [ € {1, ..., 5},
and we have shown that P; = P».

Assume P; is true, then observe that if H(®) = H®) and G = GO, then any Cr is satisfied for
any I' € R%, and we have shown that P, = P;, which concludes the proof. O

Recovering existing AUC-based fairness constraints. All AUC-based fairness constraints
proposed in previous work (see Section 10.2.3) write as instances of our general definition for a
specific choice of T', see Table 10.1. Note that I' might depend on the quantities qq, po, q1, p1-

Expressing new AUC-based fairness constraints. Relevant fairness constraints that have
not been considered in previous work can be expressed using our general formulation. Denoting

F§O) =(1- pO)Hs(O) + poGgo), consider for instance the following constraint:

AUC — AUC (10.13)

F.6 OG0

It equalizes the expected position of the positives of each group with respect to a reference group
(here group 0). Another fairness constraint of interest is based on the rate of misranked pairs
when one element is in a specific group:

E(s,2):=(1/2) - P{s(X) =s(X) |Y 2Y', Z =z}
+P{(s(X) = s(X)(Y =Y >0|Y #Y',Z = z}.

The equality F(s,0) = E(s,1) can be seen as the analogue of parity in mistreatment for the task
of ordering pairs, see Eq. (10.1). It is easy to see that this constraint can be written in the form
of Eq. (10.10) and that point 1 of Theorem 10.4 holds, hence it is equivalent to Cr(s) for some
I'e RS,

As we show below, our unifying framework enables the design of general problem formulations,
statistical guarantees and algorithms which can then be instantiated to the specific notion of
AUC-based fairness that the practitioner is interested in.

10.3.2 Learning Problem and Statistical Guarantees

We now formulate the problem of fair ranking based on the fairness definitions introduced above.
Introducing fairness as a hard constraint is tempting, but may be costly in terms of ranking
performance. In general, there is indeed a trade-off between the ranking performance and the
level of fairness.
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For a family of scoring functions S and some instantiation I" of our general fairness definition in
Eq. (10.9), we thus define the learning problem as follows:

maXges AUCHS,GS - )\‘FTC(S)

; (10.14)

where A = 0 is a hyperparameter balancing ranking performance and fairness.

For the sake of simplicity and concreteness, we focus on the special case of the fairness definition
in Eq. (10.4) — one can easily extend our analysis to any other instance of our general definition
in Eq. (10.9). Thus, we denote by s} the scoring function that maximizes the objective Ly(s) of
Eq. (10.14), where:

LA(S) = AUCH, ¢, — )‘|AUCH.§°),G§°) — AUCH‘SI)’G.(SI) |

Given a training set {(X;,Y;, Z;)}", of n d.i.d. copies of the random triplet (X,Y,Z), we denote
by n(®) the number of points in group z € {0,1}, and by n(f) (resp. n(f)) the number of positive

)

(resp. negative) points in this group. The empirical counterparts of HS(Z and ng) are then given

by, respectively:
HP (1) = (1/n™) S 1{Z = 2,Y; = ~Ls(X) < ),
GO() = (Un) S, 1{Zi = 2.Ys = +1,s(X) < ).

Recalling the notation AUC rr = AUCp p, from Section 10.2.1, the empirical problem writes:

z)\(S) = A/U\CHS,GS — )\|A/ﬁjH£0),Ggo) - A/U\CHS),GS)L

We denote its maximizer by 5. We can now state our statistical learning guarantees for fair

ranking.

Theorem 10.5. Assume the class of functions S is VC-magjor with finite VC-dimension V < 400
and that there exists € > 0 s.t. min.c(o1},ye(—1,13 P{Y =4, Z = 2} = €. Then, for any 6 > 0, for
all n > 1, we have with probability (w.p.) at least 1 —0:

log(13/0)
n—1

€ [La(s¥) — La(B))] < C\/Z- (AN +1/2) + : (4/\ + (4X + 2)6) +0(n™t).

Proof. Usual arguments imply that: Ly(s¥) — La(5)) < 2-sup,es

E)\(S) - L)\(S)‘. Introduce the

quantities:
A= sup AUCH G. — AUCH Gl A() = sup AUC 0) ~(0) — AUC (0) ~(0) |
s:Gs s,Gs H; ' ,Gy H;" ,G;
SeES SES
and A1 = blelg AUCHél),Ggl) — AUCHS),GS) .
S

The triangular inequality implies that: sup,.g i,\(s) — Ly (s)‘ <A+ Mg+ M.

Case of A: Note that:

AUCq, ¢, = (n(n—1)/2n4n_) - Ux(s),
where  Dic(s) = ——— 3 K((s(X0), i, Z0), ((X,), Y, 23)),

n(n—1) 1<i<j<n

and K((tv Y, Z)v (tlv yla Z/)) = H{(y - y,)(t - t,) > 0} + (1/2) : ]I{y # ylv t= t/}‘ The quantity UK(S)
is a known type of statistic and is called a U-statistic, see e.g. Lee (1990) for an overview. We
write Uk (s) := E[Uk(s)] = 2p(1 — p)AUCH, ..

Introducing 7 := non_/n? — p(1 — p), we have that, since sup,.s |Ux (s)| < 2nin_/(n(n —1)):

- n(n —1)

~x

A~

UK(s)] n

~

UK(S) — UK(S)

>

- - sup
2nyn_ 2p(1—p)‘ seS

1 ~ nyn_
< m
p(1—p)

— Sup
2p(1 —p) ses

U (s) — UK(S)‘.

)

1
+ - su
n?(n —1) ’ 2p(1—p) s
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The properties of the shatter coefficient described in Gyorfi (2002) (Theorem 1.12 therein) and
the fact that S is VC-major, imply that the class of sets:

{((z,9), (@",9) | (s(x) = s(2"))(y = ¥') > O} ses;,

is VC with dimension V. The right-hand side term above is covered by Corollary 3 of Clémencon
et al. (2008), presented in the preliminaries as Corollary 4.5 in Chapter 4, and we deal now with
the left-hand side term.

Hoeffding’s inequality implies that, for all n > 1, w.p. =1 — 9,

ny log(ﬁ)
— —p| < . 10.1
‘ n ’ 2n (10.15)
Since n_ = n — n,, we have that:
B (1—op (M) — (" _ )
m = (1-2p) ( p) ( - p)
It follows that:
. nyn_ ~ 1 log(2/0)
< (1=2p) ) 2 AL(5),
n%(n—1) ‘ Il + 4(n—1) ( r) 2n + 4n(9)
where:
log(2/6 1
A,(5) = B2/0) —0(n™).

2n 4(n—1)

Finally, a union bound between Corollary 3 of Clémencon et al. (2008) and Eq. (10.15) gives
that, using the upper-bound 1/(2n) < 1/(n — 1): for any n > 1, w.p. =1 -4,

p(1-p)-A< C\/Z +2(1-p) log(3/9) + A, (26/3). (10.16)

n—1
Case of Ao: Note that:
KUC 00 g0 = (n(n —1) /2n<f)n£0>) Do (),
where KO ((t,y, 2), (t',y, 7)) ={z = 0,2' = 0} - K((t,y,2), (t',y,2")). We denote:
Uk () i= E[Uxo (s) = 2g3po(1 — po) - AUC o) sor-

Following the proof of the bound for 3, introducing mg := n@n@/nz — q3po(1 — po),

~ 1 nf)n(o) 1 ~
A < 57— m + — + -sup|U s)—U S)|.
0 q%po(l _po) 0 n2(n — 1) 2q8p0(1 _po) Sgg K(O)( ) K(O)( )

The right-hand side term above is once again covered by Lemma 1. We deal now with the
left-hand side term, note that:

0), (0) (072
~ nyn n
R e (]
(0) (0)
n n
qoPo <n - qO> + qo(1 — 2po) (;; - QOPO>

(0) 0) (0) 2
n n n
+ <+ - QOP0> ( - QO> - <+ - QOPO>
n n n
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A union bound of two Hoeffding inequalities gives that for any n > 1, w.p. > 1 — ¢, we have
simultaneously:

(0 log(4/6 © log(4/6
LA I -\ CTL) R LS, P L - ) (10.17)
n 2n n 2n
It follows that:
(0),_(0) (0))2
N nyn N n®) log(4/6)
—F = 1< — I <q(1— —72 1 B,(6),
Mo ¥ n?(n—1) ol + 4n?(n —1) %0(1 = po) o ()

where
1 N log(4/9)

Bn(0) = 4(n—1) n

Finally, a union bound between (Clémencon et al., 2008, Corollary 3) and Eq. (10.17) gives, using
the upper-bound 1/(2n) < 1/(n —1): for any n > 1, w.p. =1 — 4,

2po(1 — po) - Ag < C\/Z + (14 qo(1 = po)) @ + B,,(46/5). (10.18)
Case of 31:
One can prove a similar result as Eq. (10.18) for 81: for any n > 1, w.p. =1 -9,
@pi(1—p1)- A < C\/Z + (1 +aqa(l—p1)) @ + B (46/5). (10.19)
Conclusion:

Under the assumption min,egg 1y minge;_1,13 P{Y =y, Z = 2} > ¢, note that min(p, 1 — p) > 2e.
A union bound between Eq. (10.16), Eq. (10.18), and Eq. (10.19). gives that: for any § > 0 and
n>1 wp =>1-9,

€ (La(st) — LA(5))) < C\/Z' <4>\+ ;) 1y 1083/9) (4/\+ (4)\+2)e) +0(n™),

n—1

which concludes the proof. O

Theorem 10.5 establishes a learning rate of O(1/4/n) for our problem of ranking under AUC-based
fairness constraints, which holds for any distribution of (X,Y, Z) as long as the probability of
observing each combination of label and group is bounded away from zero. As the natural
estimate of the AUC involves sums of dependent random variables, the proof of Theorem 10.5
does not follow from usual concentration inequalities on standard averages. Indeed, it requires
controlling the uniform deviation of ratios of U-processes indexed by a class of functions of
controlled complexity.

10.3.3 Training Algorithm

Maximizing directly L A by gradient ascent (GA) is not feasible, since the criterion is not continuous,
hence not differentiable. Hence, we decided to approximate any indicator function z — I{z > 0}
by a logistic function o : z +— 1/(1 4+ e™%).

We learn with stochastic gradient descent using batches By of N elements sampled with re-
placement in the training set D,, = {(X;, Yi, Z;)}™,, with Bx = {(z:,vi, z:)}},. We assume the
existence of a small validation dataset V,,, with V,, = {(:L'Z(»U), yi(u), zi(v)) ™ .. In practice, one
splits a total number of instances n + m between the train and validation dataset.

The approximation of AUC H.,G, on the batch writes:

N+1N, ;ja [(s(ws) — s(2;)) (Wi — w;)],

AUCq, c, =
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where N, := Zfil I{y; = 41} and N_ := N — N, is the number of positive instances in the

batch. Similarly, we denote by Nf) = N® — N®) the number of positive instances of group z
in the batch, with:

N N
NG& .= Z I{z; = 2z} and NJ(FZ) = Z [z = 2,y = +1}.

i=1 i=1

Due to the high number of term involved involved in the summation, the computation of
AUCpy, ¢, can be very expensive, and we rely on approximations called incomplete U-statistics,
which simply average a random sample of B nonzero terms of the summation, see Lee (1990). We
refer to Clémengon et al. (2016) and Papa et al. (2015) for details on their statistical efficiency
and use in the context of SGD algorithms, respectively. Formally, we define the incomplete
approximation with B € N pairs of AUCg, ¢, as:

ATC =5 3 olls(e) = s(e)) i = )]

(i,j)€Dp

where Dp is a random set of B pairs in the set of all possible pairs {(i,7) |1 <i < j < N}.
Here, we give more details on our algorithm for the case of the AUC-based constraint Eq. (10.4).
The generalization to other AUC-based fairness constraints is straightforward. For any z € {0, 1}
the relaxation of AUCy ) g(-) on the batch writes:

W Z o [(s(zi) = s(x;))(yi — ;)]

Zi=Zj=2

AUCH£Z)7ng> =

— —_ (B
Similarly as AUCy, ¢,, we introduce the sampling-based approximations AUC(Hg)n q» for any
z e {0,1}. '

To minimize the absolute value in Eq. (10.14), we introduce a parameter ¢ € [—1, 4+1], which is
modified slightly every naqapt iterations so that it has the same sign as the evaluation of I''C(s)
on V,,. This allows us to write a cost in the form of a weighted sum of AUC’s, with weights that
vary during the optimization process. Precisely, it is defined as:

¥ ATT ATT AT >\re
L>\7c(5) = <1 — AUCHS,GS) +X-c (AUCH§1)7G21) — AUCHgo)VGgo)) + 2g : ||WH;,

where Areg is a regularization parameter and ||W||§ is the sum of the squared Ly norms of all of
the weights of the model. The sampling-based approximation of Ly . writes:

A1r 2
< |,

~(B) ——(B) ——(B) ——(B)
Ly (s)=(1-AUCy ¢, | +A-c[AUCH®) o) —AUCL©O 0 | +
The algorithm is detailed in Algorithm 2, where sng is the sign function, i.e. sgn(x) = 2I{zx > 0}—1
for any = € R.

10.4 Richer ROC-based Fairness Constraints

The equality between two AUC’s considered as fairness constraints in Section 10.3 only quantifies a
stochastic order between distributions, not the equality between these distributions. In particular,
two very different distributions can be indistinguishable in terms of AUC. As a matter of fact, for
continuous ROCs, the equality between their two AUCs only implies that the two ROCs intersect
at one unknown point. As a consequence, AUC-based fairness can only guarantee that there
exists some threshold ¢ € R that induces a non-trivial classifier g, := sign(s(z) — t) satisfying a
notion of fairness for classification, as detailed below in Section 10.4.1. Unfortunately, the value
of t and the corresponding point « of the ROC curve are not known in advance and are difficult
to control.
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Algorithm 2 Practical algorithm for learning with the AUC-based constraint Eq. (10.4).

Input: training set D,,, validation set V,,
c—0
for i = 1 to njer do
By < N observations sampled with replacement from D,,
s < updated scoring function using a gradient-based algorithm ( e.g. ADAM), using the

B)

derivative of igc (s) on By

if (niter mod Nadapt) = 0 then
AAUC « A/U\CELZV&GQ) — A/U\Cﬁﬁz’agm computed on V,,
c—c+ sgn(AAUC) -Ac o
¢ «— min(1, max(—1,c))
end if
end for

Output: scoring function s

To see why this can be a problem for fairness, consider for instance pairwise accuracy fairness in
Eq. (10.5), which specifies that the probability of scoring a positive instance of a given group
higher than a negative example should be the same across groups. Despite this, it is possible
for positives from one group to appear less often in the top 1% scores than positives from the
other group (via “compensation” in other regions of the score distribution). In a use-case where
only top 1% individuals get some advantage (or obtain better advantages), this would be unfair
for one group. Learning with AUC-based constraints can thus lead to scoring functions that are
inadequate for the use-case of interest. These limitations serve as a motivation to introduce new
ROC-based fairness constraints in Section 10.4.2.

10.4.1 Limitations of AUC-based Constraints

In this section, we clarify the relationship between known propositions for fairness in classification
on the one hand, and our AUC-based and ROC-fairness for bipartite ranking on the other hand.
In a nutshell, we show that: (i) if a scoring function s satisfies an AUC-based fairness constraint,
there exists a certain threshold ¢ such that the classifier g;; obtained by thresholding s at ¢
satisfies fair classification constraints, and (ii) ROC-based fairness constraints allow to directly
control the value of ¢ for which g, + is fair, and more generally to achieve classification fairness
for a whole range of thresholds, which is useful to address task-specific operational constraints.

Pointwise ROC equality and fairness in binary classification. As mentioned in the main
text, a scoring function s : X — R induces an infinite family of binary classifiers g,; : z —
2-I{s(z) > t} — 1 indexed by thresholds ¢ € R. The following proposition shows that one of those
classifiers satisfies a fairness constraint as soon as appropriate group-wise ROC curves are equal
for some value « € [0, 1].

Proposition 10.6. Under appropriate conditions on the score function s (i.e., s € S where S
satisfies Assumption 10.9), we have that:

e Ifpo =p1 and s satisfies:
ROCH§O)7Gg0) (o) = ROCHS),GS)(O‘)’ (10.20)

for some a € [0, 1], then there exists (tg,t1) € (0,T)2, s.t. M (gg1)) = MM (gs4,), which
resembles parity in mistreatment (see Eq. 10.1).

o [If s satisfies:

ROC (a) = ROCHQ G(1)(Oé)7 (10.21)

H,,G

for some a € [0,1], then g, satisfies fairness in FNR (see 10.3) for some threshold
te (0,7).
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o [f s satisfies:
ROC, @ (@) =ROC, 0 4 (a), (10.22)
for some o € [0, 1], then gs+ satisfies parity in FPR (see 10.2) for some threshold t € (0,T).

Proof. We go over each case.
Case of Eq. (10.20). Eq. (10.20) also writes:

-1 —
G0 (HY) (a) =W o (HD)  (a),
Introduce t, = (HS(Z))*l(a) then ng)(tz) = HS(Z)(tZ) = « for any z € {0,1}, since H is
increasing. Also,
M(z)(QS,tz) =Plgs. (X) #Y [ Z =2},

= szgz)(tZ) + (1 =p)(1 - Hs(z)(tZ))7

= (20[ - 1)pz + (1 - O‘)v
which implies the result.
Case of Eq. (10.21). Eq. (10.21) also writes:

GO o H ) = G o H (o),

which translates to:

GO (s(X) < H M) = GWY (s(X) < H Y (a)),

hence g5 ; satisfies fairness in FNR (Eq. (10.3)) for the threshold ¢ = H; ().
Case of Eq. (10.22). Eq. (10.22) also writes:

Gy o (H) M (a) = Gy o (HY) o),
which implies, since G, H. §°) and H, £1) are increasing:
HO o (HO) " (a) = HO o (H®) ™ (a),
and:

HO (5(X) > (HO)™ (@) = BD (s(X) > (7)),
hence gs; satisfies fairness in FPR (Eq. (10.2)) for the threshold ¢ = (HS(O))’l(a). O

Relation with AUC-based fairness. For continuous ROCs, the equality between their two
AUCs implies that the two ROCs intersect at some unknown point, as shown by Proposition 10.7
(a simple consequence of the mean value theorem), proven below. Theorem 3.3 in Borkan et al.
(2019) corresponds to the special case of Proposition 10.7 when h = g, h’ # ¢'.

Proposition 10.7. Let h,g,h’, ¢’ be c.d.f.s on R such that ROC}, ;, and ROCy o are continuous.
If AUCy 4 = AUCy o, then there exists o € (0,1), such that ROCy, 4(a) = ROCh o (cv).

Proof. Consider ¢ : [0,1] — [—1,1]: ¢(a) = ROC}, 4(r) — ROCps ¢ (v), it is continuous, hence
integrable, and with:
f e

Note that ¥(1) = AUCy, g — AUC) o = 0 = ¥(0). The mean value theorem implies that there
exists « € (0,1) such that:

ROCh’g<Oz) = ROCh/’g/ (a)
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Proposition 10.7, combined with Proposition 10.6, implies that when a scoring function s satisfies
some AUC-based fairness constraint, there exists a threshold ¢ € R inducing a non-trivial classifier
gs,t := sign(s(x) — t) that satisfies some notion of fairness for classification at some unknown
threshold ¢. For example, it is straightforward from Proposition 10.6 and Proposition 10.7 that:

e Eq. (10.4) implies parity in mistreatment for some thresholds,
e Eq. (10.5), Eq. (10.7) and Eq. (10.13) all imply parity in FNR for some threshold,

e Eq. (10.6) implies parity in FPR for some threshold.

The principal drawback of AUC-based fairness constraints is that it guarantees the existence of a
single (unknown) ¢ for which the fair binary classification properties are verified by g ¢, and that
the corresponding ROC point o cannot be easily controlled.

Relation with ROC-based fairness. In contrast to AUC-based fairness, ROC-based fairness
allows to directly control the points « in Proposition 10.6 at which one obtains fair classifiers as

it precisely consists in enforcing equality of ROC and ROC ;) ) at specific points.

¢ g
Furthermore, one can impose the equalities Eq. (10.20), Eq. (10.21) and Eq. (10.22) for several
values of a such that thresholding the score behaves well for many critical situations. Specifically,
under Assumption 10.9, we prove in Proposition 10.8 below that pointwise constraints over a
discretization of the interval of interest approximates its satisfaction on the whole interval. This
behavior, confirmed by our empirical results (see Sections 10.5 and 10.5.3), is relevant for many
real-world problems that requires fairness in binary classification to be satisfied for a whole range
of thresholds ¢ in a specific region. For instance, in biometric verification, one is interested in
low false positive rates (i.e., large thresholds t). We refer to Grother and Ngan (2019) for an
evaluation of the fairness of facial recognition systems in the context of 1:1 verification.

Proposition 10.8. Under Assumption 10.9, if there exists F € {H,G} s.t. for every k €
{1,...,mp}, |A (s)| < e, then:

F,agc)

oo (rael < e 50 e ot —off)
with the convention a;g) =0 and a%mFH) = 1.
Proof. For any F € {H,G}, note that:
azl[l()l?l]lﬁp,a(S)l S jebax ze[a§35$+l)]|AF7a($)|.
ROCF,S(O)’F,S(I) is differentiable, and its derivative is bounded by B/b. Indeed, for any K;, K3 € K,

since K; is continuous and increasing, the inverse function theorem implies that (K;)~! is
differentiable. Tt follows that K, o K| ' is differentiable and that its derivative satisfies:

/ -1
(Ko oKl—l)' - K207K11 < E
K{o Ky b
Let k€ {0,...,m}, and € [a&f% a%ﬁl)]. Since o — Ap () is continuously differentiable, then

a simultaneously satisfies, with the assumption that |A (s)| <eforany ke{l,...,K}:

(k)
F,ap

)

B B
[Ara(s)] <e+ (1 + b) ‘agc) - oz’ and |Apq(s)] <e+ (1 + b) ‘a—a%ﬁl)

which implies that |[Apq(s)] <e+ (1 + B/b)‘agfﬂ) _ aﬁf)}/z.
Finally, we have shown that:

B+b (k+1) (k)
sup |[Apqe(s)| <€+ —— max ‘a -« ‘
ae[0,1]| Fa(s)] 20 ke{0,.,m}l T F
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10.4.2 Learning with Pointwise ROC-based Fairness Constraints

To impose stricter fairness conditions, the ideal goal is to enforce the equality of the score
distributions of the positives (resp. negatives) between the two groups, i.e. G&O) = Ggl) (resp.
H§°) = Hﬁl)). This stronger functional criterion can be expressed in terms of ROC curves. For

€ [0,1], consider the deviations between the positive (resp. negative) inter-group ROCs and
the identity function:

AG7O((S) = ROCGgo),Ggl)(a) —« (resp. AH,Q(S) = ROCHS)),HS) (Oé) - Oé).

The aforementioned condition of equality between the distribution of the positives (resp. negatives)
of the two groups are equivalent to satisfying Ag o(s) = 0 (resp. Ay o(s) = 0) for any a € [0, 1].
When both of those conditions are satisfied, all of the AUC-based fairness constraints covered
by Eq. (10.9) are verified, as it is easy to see that Cj(s) = 0 for all [ € {1,...,5}. Furthermore,
guarantees on the fairness of classifiers g;; induced by s hold for all possible thresholds ¢. While
this strong property is desirable, it is challenging to enforce in practice due to its functional
nature, and in many cases it may only be achievable by completely jeopardizing the ranking
performance.

We thus propose to implement the satisfaction of a finite number of fairness constraints on
Ap.o(s) and Ag o(s) for specific values of a.. Let my, mg € N be the number of constraints for

the negatives and the positives respectively, as well as ag = [a(H), .. ag"H)] € [0,1]™# and
ag = [048), .. a(GmG)] € [0,1]™¢ the points at which they apply (sorted in strictly increasing

order). With the notation A := (a, Ag, Ag), we can introduce the criterion Ly (s), defined as:

La(s) = AUCH, 6, = Si A |8 o0 ()] = S A B g a0 (9)],

Ay = [)\(hl,), ey )\(I:,"'H)] e R g = [)\8), ey )\(Gmc)] € R''' being trade-off hyperparameters.
This criterion is flexible enough to address the limitations of AUC-based constraints outlined
above. In particular, a practitioner can choose the points in ay and ag so as to guarantee
the fairness of classifiers obtained by thresholding the scoring function at the desired trade-offs
between false negative/false positive rates. Furthermore, in applications where the threshold
used at deployment can vary in a whole interval, as in biometric verification (Grother and Ngan,
2019), we show in Proposition 10.8 under some regularity assumption on the ROC curve (see
Assumption 10.9 in Section 10.4.3), if a small number of fairness constraints mp are satisfied
at discrete points of the interval for F € {H, G}, then one obtains guarantees in sup norm on
a — Ap, (and therefore fair classifiers) in the entire interval.

10.4.3 Statistical Guarantees and Training Algorithm

We now prove statistical guarantees for the maximization of L A(8), the empirical counterpart of
Ly:

AUCH, 6, = T2 A By o0 (9)] = 25 08 [A s 0 (5)],

where AH,(){(S) = ROCGgo),Ggl)(a) — «a and AG7Q(S) = ROCH£0)7H§1)(C¥) — « for any o € [0, 1].
We denote by s} the maximizer of Ly over S, and 55 the maximizer of Ly over S.
Our analysis relies on the following regularity assumption on the ROC curve.

Assumption 10.9. The class S of scoring functions take values in (0,T) for some T >0, and
the family of c.d.f.s K = {ng)7Hs(z) :s€8,2€{0,1}} satisfies: (a) any K € K is continuously
differentiable, and (b) there exists b, B > 0 s.t. V(K,t) e K x (0,T), b < |K'(t)| < B. The latter
condition is satisfied when scoring functions do not have flat or steep parts, see Clémencon and
Vayatis (2007) (Remark 7) for a discussion.

Theorem 10.10. Under Assumption 10.9 and those of Theorem 10.5, for any 6 > 0, n > 1,
w.p. =1-9:

e [La(sk) ~ LaGa)] < C(1/2+2¢Cr ) 4/ ¥ + 26 (14 3C ) /2052 1 O(n 1),
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where Cy i = (1+ B/D) (Mg + Aa), with Ay = ST A and X = 3m6 AW,

Proof. Usual arguments imply that: La(s}) — La(S5A) < 2 - sup,es

La(s) — LA(S)‘. As for
Theorem 10.5, the triangle inequality implies that:

mp

o5 S st

Fe{F,G} k=1

~

Ta(s) — La(s ‘ ‘AUCHSG — AUCH. ¢,

mp
< ‘AUCHS,GS - AUCHS,GS‘ DI Aka)’ARak(S) - AF,ak(S)‘~
Fe{F,G} k=1

It follows that:

sup EA(S) — LA(S)‘ < sup A/IJ\CHS7G5 — AUCq, c,
SeS seS

sup ‘AHQ) AH,a(S)’

s,0eSx[0,1]

+ Ao sup ’AGQ(S) —Ag.a(s)],
5,8 %[0,1]

and each of the terms is studied independently. The first term is already dealt with for Theo-
rem 10.5, and the second and third terms have the same nature, hence we choose to focus on
Ag,a(s) — Ag,a(s). Note that:

- [Ggw o (Ggm)‘l —ao(@9) | a-a+ [oe (@) - a0 (60) [0 a).

Ti(s,a) Tg{sia)
Hence:
sup ‘Aga AG’Q(S)‘ < sup  |Ti(s,a)|+  sup |Ta(s, )l
s,aeSx%[0,1] s,aeSx%[0,1] s,aeSx%[0,1]

and we study each of these two terms independently.

Dealing with sup, esx(o0,17|71(s; @)|. Introduce the following functions, for any z € {0,1}:

n

G0 = - DY = +1,Zi = 2 5(X) <1} and U = B[00,

s >
i=1

~

then G (t) = (n/n)) - US(1) and G (t) = (1/g2p2) - US() for any t  (0,7).

The properties of the generalized inverse of a composition of functions (see van der Vaart (2000),
Lemma 21.1, page 304 therein) give, for any w € [0, 1]:

©),,

(@g()))_l () = (ﬁg}g)‘l (”*n ) . (10.23)

The assumption on K implies that G is increasing. Define Y = a9 o s, for any t € (0,T),
we have:

7Ot =T, o (G( (¢ )) (10.24)

Combining Eq. (10.23) and Eq. (10.24), we have, for any u € [0, 1]:

(60) " ) = () o (09,)" (”%j“) .
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Since GS)) is continuous and increasing, the inverse function theorem implies that (G(SO))_1 is
differentiable. It follows that:
/
() (6™ w)
< 7

() () 1w) h

L (aw o @) w) =

and the mean value inequality implies:

sup  [T1(s, )| < (B/b) - sup
s,aeSx[0,1] s,0eS8 % [0,1]

R 1/,
CONESR

Conditioned upon the Z;’s and Y;’s, the quantity

is a standard empirical process, and it follows from Shorack and Wellner (1989) (page 86 therein),

that:
s V7! (e n_ 50
sup (U k(g)) —a| = sup (o)U k(°>( ) —al.
ael0,1] ks n acl0,1]|ny” "
Similar arguments as those seen in Theorem 10.5 imply:
sup  [Ti(s,0)| < (BB swp | =T (@) —al,
s,0eSx[0,1] s,0eSx[0,1]|n n,
(0)
B n
< — — qopo - sup U(O)«n (@) = qopocy|,
bgopo | n bgopo  s,aesx[0,1]] ™k

A standard learning bound (see Boucheron et al. (2005) Theorem 3.2 and 3.4 page 326-328
therein) implies that: for any § > 0,n >0, w.p. > 1 —

210g (2 (5
0 0y (@) = U0 ()] < Oy L 4 4| 2BED) (10.25)

where C' is an universal constant.

sup
s,aeSx%[0,1]

A union bound between Eq. (10.25) and a standard Hoeffding inequality for ngf))

0>0n>1 wp =1-46,

|V /log 4/6
supl|Ti (s, a)| < 10.26
seg ITi(s, )l < bquo bQOpo ( )

Dealing with sup, aesxo,1]/72(s; @)]. We recall that éff)(t) = (n/nﬁf)) : (77(122 (t) and ng)(t) _
(1/q.p=) - US(t) for any t € (0,T).

First note that, using the same type of arguments as for Theorem 10.5:

gives: for any

s [To(s,a)l < sw GO0 - GO |,

5,8 % [0,1] s,teS % (O,T)’

1 ngrl) 1 (1 1
<—|— —q@pi|+——+ sup ég(t) - Uv(lg(t)’
qQpi| n q1P1  5,teSx(0,T)

The same arguments as for Eq. (10.25) apply, which means that: for any § > 0,n > 0, w.p.

>1-96,
o0 ) — U q/ «/Zlog 2/5 (10.27)

sup
s,teS % (0,T)
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where C' is an universal constant.

A union bound of Eq. (10.27) and a standard Hoeflding inequality for n(f) finally imply that: for
any § > 0,n>1, wp =1-9,

C \% 3 log(4/6
sup|Ta(s, )| < —A/ — + —«/M. (10.28)
seS apr V'n  q@p1 2n
Conclusion.

Combining Eq. (10.26) and Eq. (10.28), one obtains that: for any 6 > 0,n > 1, w.p. =1 — 9,

A 1 B 1% 3 3B log(8/6
s [Rea(s) — Ban(] <0 (L1w B )\ Vg (2 30, [oED)
5,0€5x[0,1] @ip1 - bgopo n ap1 - bgopo n

(10.29)

and a result with similar form can be shown for sup, ,csx[0,1] ‘AHOC(S) — AH,a(S)’ by following
the same steps.
Under the assumption minego 13 mingeq—1 13 P{Y = y,Z = 2} > ¢, a union bound between

Eq. (10.29), its equivalent for AHQ and Eq. (10.16) gives, with the upper-bound 1/(2n) < 1/(n—1):
forany § >0,n > 1, wp. > 1—9,

€ (La(s%) — La(54)) < 2e <1 +3(\g + o) [1 + BD log(19/9)

b n—1

B
+C( +2e(Ag + M) [1+bD — +0(n™),
which concludes the proof. O

Theorem 10.10 generalizes the learning rate of O(1/4/n) of Theorem 10.5 to ranking under
ROC-based constraints. Like Theorem 10.5, its proof relies on results on U-processes, but further
requires a study of the deviations of the empirical ROC curve seen as ratios of empirical processes
indexed by S x [0,1]. In that regard, our analysis builds upon the decomposition proposed in
Hsieh and Turnbull (1996), which enables the derivation of uniform bounds over S x [0, 1] from
results on standard empirical processes (van der Vaart and Wellner, 1996).

10.4.4 Training Algorithm

The approach presented here follows the same broad principles as that of Section 10.3.3. First,
we define an approximation of the quantities H, Z) G on By, for any z € {0, 1}, as:

| X
F(t) = ﬁ Z Hy; = —1,2; = z} - o(t — s(x)),

{yl = +17ZZ = Z} ’ U(t - S(xi))7
which can be respectively seen as relaxations of the false positive rate (i.e. H. (z)( t)y=1-H (Z)( t))
and true positive rate (i.e. GS(t) = 1 — G (¢)) at threshold ¢ and conditioned upon Z = .

For any F € {H,G}, ke {1,... 7mp}7 we introduce a loss £% which gradients are meant to enforce
the constraint |A Fal® (s)] = 0. This constraint can be seen as one that imposes equality between
the true positive rates and false positive rates for the problem of discriminating between the
negatives (resp. positives) of sensitive group 1 against those of sensitive group 0 when F = H
(resp. F = G). An approximation of this problem’s false positive rate (resp. true positive rate)
at threshold ¢ is FL” (t) (resp. Fig(l)(t)). Introduce cgf) as a constant in [—1, +1] and tgf) as a

threshold in R, the following loss K%c) seeks to equalize these two quantities at threshold t%c):

0 (s) = - (B0 (1) = B0 (15)).
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If the gap between F (tgf)) and ﬁél)(tg)) — evaluated on the validation set V,, — is not too
large, the threshold t(k) is modiﬁed slightly every few iterations so that 13,(0)( (k)) and ﬁ(l)(t(k))
both approach the target value o F . Otherwise, the parameter cgf) is slightly modified. The
precise strategy to modify cF) and t%) is detailed in Algorithm 3, and we introduce a step At to
modify the thresholds tgc).

The final loss writes:

iA,c,t(s) 1= (1 — A—[\J/CHS,GS) + Z ( Z )\ g(k) ) )\reg va”27

Fe{F,G}

~ —_— —_ (B
and one can define Lg\{ggi by approximating AUCy, ¢, above by AUC;;GE. The full algorithm
is given in Algorithm 3.

Algorithm 3 Practical algorithm for learning with ROC-based constraints.

Input: training set D,,, validation set V,,
(k)e()foranyFe{HG}ke{l mp}
) 0 for any F e {H,G}, k e {L...,mp}
for i = 1 to njier do
By < N observations sampled with replacement from D,,
s « updated scoring function using a gradient-based algorithm (e.g. ADAM), using the
derivative of Z@t(s) on By
if (niter mod Nadapt) = 0 then
for any Fe {H,G}, ke{l,...,mp} do
Agf) — 1’5‘5(0) (tg@) — ﬁ’s(l) (tgf)) computed on V,,
ng) — ﬁs(o) (tgf)) + }A?S(l) (t%k)) — Qag) computed on V,,
if ‘2;’?)‘ > (A;’?)‘ then
t%k) — t%c) + sgn <E§f)> - At
else
cg) — cg) + sgn (Ag)) -Ac
c%k) «— min (1,max (71, cgf))>
end if
end for
end if
end for

Output: scoring function s

10.5 Experiments

We have experimented with our algorithms on real and synthetic data, with various AUC and
ROC-based fairness constraints. This section covers extensively all results and details about
our experimental setup. In general, our empirical results show that our approaches consistently
balance ranking performance and the chosen notion of fairness.
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10.5.1 Experimental Details

Scoring function and optimization. We used a simple neural network of various depth D
(D = 0 corresponds to linear scoring function, while D = 2 corresponds to a network of 2 hidden
layers) where each layer has the same width d (the dimension of the input space), except for the
output layer which outputs a real score. We used ReLLU’s as activation functions. To center and
scale the output score we used batch normalization (BN) (see Goodfellow et al., 2016, Section
8.7.1 therein) with fixed values v = 1, 8 = 0 for the output value of the network. Algorithm 4
gives a formal description of the network architecture. The intuition for normalizing the output
score is that the ranking losses only depend on the relative value of the score between instances,
and the more classification-oriented losses of ROC-based constraints only depend on a threshold
on the score. Empirically, we observed the necessity of renormalization for the algorithm with
ROC-based constraints, as the loss ng) is zero when AS(O)(t%k)) = ﬁ's(l)(t%k)) € {0,1}, which leads
to scores that drift away from zero during the learning process, as it seeks to satisfy the constraint
imposed by Kgf). All of the network weights were initialized using a simple centered normal
random variable with standard deviation 0.01.

Algorithm 4 Network architecture.

Input: observation x = h{j € R%,
for k=1to D do
Linear layer: hy = W,;rth + by, with Wy, € R%4 b, € R%! learned by GD,
ReLu layer: hj, = max(0, b)) where max is an element-wise maximum,
end for
Linear layer: hpy1 = wgﬂh’b + bpy1 with wpyq € R, bp+1 € R learned by GD,
BN layer: hW'p, = (hpt1 — pp+1)/0D+1, With pupi1 € R,0p 1 € R running averages,

Output: score s(z) of x, with s(x) = h5,, € R.

For both AUC-based and ROC-based constraints, optimization was done with the ADAM
algorithm. It has an adaptative step size, so we did not modify its default parameters. Refer to
Ruder (2016) for more details on gradient descent optimization algorithms.

Other details. For all experiments, we set aside 40% of the data for validation, i.e. m =
|0.40(m + n)| with |-] the floor function, the batch size to N = 100 and the parameters of the
loss changed every nadapt = 50 iterations. For any sampling-based approximation computed on
a batch By, we set B = 100, and B, = 10° for those on a validation set V,,. The value Ac
was always fixed to 0.01 and At to 0.001. We used linear scoring functions, i.e. D = 0, for the
synthetic data experiments, and networks with D = 2 for real data.

The experiments were implemented in Python, and relied extensively on the libraries numpy,
TensorFlow (Abadi et al., 2016), scikit-learn (Pedregosa et al., 2011) and matplotlib for
plots.

10.5.2 Synthetic Data Experiments

The following examples introduce data distributions that we use to illustrate the relevance of our
approach.

Example 10.11. Let X = [0,1]%. For any x = (z1 x3) € X, let FO(2) = FM(z) = 1, as
well as O (x) = x1 and 1M (z) = x3. We have F = 1 (F is the uniform distribution) and
n(x) = qor1 + qrxe. Consider linear scoring functions of the form s.(x) = cx1 + (1 — ¢)x2
parameterized by c € [0,1]. Fig. 10.1 plots AUCy, ¢, and AUCy ) g for any z € {0, 1} as a
function of ¢, illustrating the trade-off between fairness and ranking 7performance.
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Example 10.12. Set X = [0,1]?. For any x € X with v = (z1 x2)", set:
FO(z) = (16/) - I{a® + y* < 1/2},
FO(z) = (16/3m) - 1{1/2 < 2® + 3 < 1},

and 10 (z) = M (z) = (2/7) - arctan(zy/z1).

For all of the synthetic data experiments, our objective is to show that the learning procedure
recovers the optimal scoring function when the dataset is large enough. Each of the 100 runs
that we perform uses independently generated train, validation and test datasets. The variation
that we report on 100 runs hence includes that of the data generation process, which is small
since we use large samples. Precisely, for each run, we chose a total of n +m = 10,000 points for
the train and validation sets and a test dataset of size nies; = 20,000. Both algorithms ran for
niter = 10,000 iterations, and with the same regularization strength A = 0.01.

Example 10.11. First, we illustrate learning with the AUC constraint in Eq. (10.4) on the
simple problem in Example 10.11. Our experiment shows that we can effectively find trade-offs
between ranking accuracy and satisfying Eq. (10.4) using the procedure described in Algorithm 2.

The final solutions of Algorithm 2 with two different values of A, parameterized by c, are shown
in Fig. 10.2. A representation of the value of the corresponding scoring functions on [0, 1] x [0, 1]
is provided in Fig. 10.3. The median ROC curves for two values of A over 100 independent runs
are shown in Fig. 10.4, with pointwise 95% confidence intervals.

Example 10.12. Example 10.12 allows to compare ROC-based and ROC-based approaches.
The former uses Eq. (10.4) as constraint and the latter penalizes Ap 3/4(s) # 0. The goal of
our experiment with Example 10.12 is to show that Algorithm 3 can effectively learn a scoring
function s for which the a corresponding to a classifier g, that is fair in FPR is specified in
advance, and that the solution can be significantly different from those obtained with AUC-based
constraints, i.e. Algorithm 2.

In practice, we compare the solutions of optimizing the AUC without constraint, i.e. Algorithm 2
with A = 0 with those of Algorithm 2 with A = 1 and Algorithm 3 where we impose Ay 3/4(s) =0
with strength Ay = 1. To illustrate the results, we introduce the following family of scoring
functions s.(z) = —c-x1 + (1 — ¢) - x3, parameterized by c € [0,1].

In practice, we observe that the different constraints lead to scoring functions with specific trade-
offs between fairness and performance, as summarized in Table 10.2. Results with AUC-based
fairness are the same for A = 0 and A = 1 because the optimal scoring function for ranking
satisfies Eq. (10.4).

Fig. 10.5 shows that the AUC-based constraint has no effect on the solution, unlike the ROC-based
constraint which is successfully enforced by Algorithm 3. Fig. 10.6 gives two possible scoring
functions with Algorithm 3. The median ROC curves for two values of Ay over 100 independent
runs are shown in Fig. 10.7, with pointwise 95% confidence intervals.

10.5.3 Real Data Experiments

Datasets. We evaluate our algorithms on four datasets that have been commonly used in the
fair machine learning literature. Those are the following:

0.8 1
0.7 A
0.6 4 —— AUCup 6o — AUCy,, 6,
— AUCHW, g
051 — ==
0.0 0.2 0.4 0.6 0.8 1.0

C

Figure 10.1: Plotting Example 10.11 for ¢; = 17/20. Under the fairness definition Eq. (10.4), a
fair solution exists for ¢ = 1/2, but the ranking performance for ¢ < 1/2 is significantly higher.
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Table 10.2: Results on the test set, averaged over 100 runs (std. dev. are all smaller than 0.02).

Method AUC-based fairness ROC-based fairness

Value of A A=0 A>0 AR — g >0
AUC AAUC AUC AAUC  [Apgul AUC  AAUC  [Ap sl

Example 10.11  0.79 0.28 0.73 0.00 - - -
Example 10.12  0.80 0.02 0.80 0.02 0.38 0.75 0.06 0.00

The German Credit Dataset (German), featured in Zafar et al. (2019); Zehlike et al. (2017);
Singh and Joachims (2019); Donini et al. (2018), consists in classifying people described by
a set of attributes as good or bad credit risks. The sensitive variable is the gender of the
individual, i.e. male (Z = 0) or female (Z = 1). It contains 1,000 instances and we retain
30% of those for testing, and the rest for training/validation.

The Adult Income Dataset (Adult), featured in Zafar et al. (2019); Donini et al. (2018), is
based on US census data and consists in predicting whether income exceeds $50K a year.
The sensitive variable is the gender of the individual, i.e. male (Z = 1) or female (Z = 0).
It contains 32.5K observations for training and validation, as well as 16.3K observations for
testing. For simplicity, we removed the weights associated to each instance of the dataset.

The Compas Dataset (Compas), featured in Zehlike et al. (2017); Donini et al. (2018),
consists in predicting recidivism of convicts in the US. The sensitive variable is the race of
the individual, precisely Z = 1 if the individual is categorized as African-American and
Z = 0 otherwise. It contains 9.4K observations, and we retain 20% of those for testing, and
the rest for training/validation.

The Bank Marketing Dataset (Bank), featured in Zafar et al. (2019), consists in predicting
whether a client will subscribe to a term deposit. The sensitive variable is the age of the
individual: Z = 1 when the age is between 25 and 60 (which we refer to as “working age
population”) and Z = 0 otherwise. It contains 45K observations, of which we retain 20%
for testing, and the rest for training/validation.

For all of the datasets, we used one-hot encoding for any categorical variables. The number of
training instances n + m, test instances ntest and features d for each dataset is summarized in
Table 10.3.

Table 10.3: Number of observations and feat d per dataset.

Dataset German Adult Compas Bank

n+m 700 32.5K 7.5K 36K
Test 300 16.3K 1.9K 9K
d 61 107 16 59

Parameters. For Algorithm 2, we select different AUC-based fairness constraints depending on
the dataset. In the case of Compas (recidivism prediction), being labeled positive is a disadvantage
so the approach with AUC-based fairness uses the constraint in Eq. (10.6) to balance FPRs (by
forcing the probabilities that a negative from a given group is mistakenly ranked higher than a
positive to be the same across groups). Conversely for German (credit scoring), a positive label
is an advantage, so we choose Eq. (10.5) to balance FNRs. For Bank and Adult, the problem has
no clear connotation so we select Eq. (10.8) to force the same ranking accuracy when comparing
the positives of a group with the negatives of another.

Inspired by the consideration that many operational settings focus on learning a good score for
small FPR rates, the ROC-based approach is configured to simultaneously align the distribution
of FPR and TPR for low FPRs between both groups by penalizing solutions with high |Ag q/s(s)],

|Am1/4(8)]s |Ag,1s(s)] and [Ag,1/4(s)]-
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Precisely, for every run of Algorithm 3, we set:

1
mg =mpyg = 2, ag)—ozg)— 8)— g):

o |

AP =28 =x and A = AP =

For all algorithms, we chose the parameter A from the candidate set € {0,0.25,0.5,1, 5,10}, where
A = 0 corresponds to the case without constraint. Denoting by 5 the output of Algorithm 2 or
Algorithm 3, we selected the parameter Ay of the L2 regularization that maximizes the criterion
L (3) (resp. La(3)) on the validation dataset over the following candidate regularization strength
set:

Areg € {1 x 10735 x 10731 x 10725 x 10721 x 107*,5 x 107 %, 1}.

The selected parameters are summarized in Table 10.4. Results are summarized in Table 10.5,
where AUC denotes the ranking accuracy AUCq, ¢, and AAUC denotes the absolute difference
of the terms in the AUC-based fairness constraint of interest. We also report on the values of
’AFJ/g} and ‘AF71/4’ for any F' € {H, G} and refer the reader to the ROC curves in Fig. 10.8 and
Fig. 10.8 for a visual summary of the other values of Ap, with F € {H,G} and o € [0,1]. We
highlight in bold the best ranking accuracy, and the fairest algorithm for the relevant constraint.
All of the numerical evaluations reported below are evaluations on the held-out test set.

Table 10.4: Parameters selected using the validation set for the runs on real data.

Parameters Constraint
Dataset  Variable None AUC ROC
German A 0 0.25 0.25

Areg 0.5 0.5 0.5

A 0 0.25 0.25

Adult Aez 005 0.05 0.05
Compas A 0 0.5 0.25
P Az 0.05 005 0.05
Bank A 0 0.25 0.25

Areg 0.05 0.05 0.05

Results for the dataset Compas. Compas is a recidivism prediction dataset, where the
sensitive variable is Z = 1 if the individual is categorized as African-American and 0 otherwise.
As being labeled positive (i.e., recidivist) is a disadvantage, we consider the AUC-based constraint
in Eq. (10.6) to force the probabilities that a negative from a given group is mistakenly ranked
higher than a positive to be the same across groups. While the scoring function learned without
fairness constraint systematically makes more ranking errors for non-recidivist African-Americans,
we can see that the AUC-constraint achieves its goal as it makes the area under ROC o . and
ROC Ho g, vVery similar. We can however see that slightly more of such errors are still made
in the first quartile of the scores. As an alternative to AUC-based fairness, we thus configure
our ROC-based fairness constraints to align the distributions of positives and negatives across
both groups by penalizing solutions with high [Aq 1/5(5)[, [Ag1/4(8)], [Am,1/5(s)| and [Ag 1/4(s)]-
In line with our theoretical analysis (see the discussion in Section 10.4.2), we can see from
ROCGm) o and ROCH<0) HO that it suffices to impose equality of the positive and negative
distributions in the entire interval [0,1/4] of interest. In turn, ROC ) . and ROCL o
become essentially equal in this region as desired. Note that on this databet both the AUC and
ROC constraints are achieved with minor impact on the ranking performance, as seen from the
AUC scores.

Results for the dataset Adult. We now turn to Adult, an income prediction dataset where Z
denotes the gender (Z = 0 for woman) and a positive label indicates that the person makes over
$50K /year. For this dataset, we plot ROCH<1) o) and ROCH(0> o and observe that without

fairness constraint, men who make less than $50K are much more likely to be mistakenly ranked
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Table 10.5: Results on test set. The strength of fairness constraints and regularization is chosen
based on a validation set to obtain interesting trade-offs, as detailed in Section 10.5.3.

Measure Dataset
Constraint ~ Value German Adult Compas Bank
AUC 0.76 0.91 0.72 0.94

AAUC 007 016 020  0.13
|Agas|  0.01 031 026  0.09

None |Apajl 020 0.36 0.32  0.18
Agusl 013 002 029  0.00
|Agaal 020 006 029  0.04
AUC 0.75 089 071  0.93
AAUC  0.05 0.02 0.00 0.05
Agas| 005 009 006  0.03

AUC-based |Apajl 008 017 003  0.11
|Agas| 001 006 002 027
|Agaal 002 014 006 037
AUC 0.75 087 070 091
AAUC 0.07 007 005 014

ROC.based |Amisl 003 0.06  0.01  0.03

|Agaul 007 0.01  0.02  0.05
|Agasl 004  0.00  0.00  0.06
|Agaul 001 0.02  0.00 021

above a woman who actually makes more, than the other way around. The learned score thus
reproduces a common gender bias. To fix this, the appropriate notion of AUC-based fairness is
Eq. (10.8): we can see that it successfully equates the area under ROCHE”,GS’) and ROCH£0)$G21).
Note however that this comes at the cost of introducing a small bias against men in the top
scores. As can be seen from ROCH§0>7H§1> and ROCGEO),GS), positive women now have higher
scores overall than positive men, while negative men have higher scores than negative women.
These observations illustrate the limitations of AUC-based fairness discussed in Section 10.4.
To address them, we use the same ROC constraints as we did in Compas so as to align the
distributions of positives and negatives of each group in [0, 1/4], which is again achieved almost
perfectly in the entire interval. While the degradation in ranking performance is more noticeable
on this dataset, a clear advantage from ROC-based fairness in both datasets is that the obtained
scoring function can be thresholded to obtain fair classifiers at a wide range of thresholds.

Results for the dataset Bank. Recall that for this dataset we consider the AUC constraint
Eq. (10.8) to force the same ranking accuracy when comparing the positives of a group with the
negatives of another. Fig. 10.8 shows that the score learned without constraint implies a stochastic
order between the distributions of the problem that writes Hs(l) < HS(O) < Géo’ < Gé”, where
h < g means that g is stochastically larger than h. This suggests that the task of distinguishing
positives from negatives is much harder for observations of the group Z = 0 than for those
of the working age population (Z = 1), which could be a consequence of the heterogeneity of
the group Z = 0. On the other hand, the left plot representing ROCHS).GS’) and ROCHS))’GE;I)
for the setting without constraint gives an appreciation of the magnitude of those differences.
Precisely, it implies that it is much harder to distinguish working age positives (Y = +1,Z = 1)
from negatives of group Z = 0 than working age negatives from positives of group Z = 0. The
correction induced by the AUC constraint suggests that it was due to the fact that scores for
positives of the group (Y = +1,Z = 0) were too small compared to the positives of the working
age population (Y = +1,Z = 1). Indeed, learning with the AUC constraint roughly equalizes
the scores of the positives across both groups Z = 0 and Z = 1. Additionally, in the left plot
for learning with AUC constraints, we can see that ROCH@,GS}) and ROCHgo)’G(Ql) intersect and
have similar AUC’s as expected, which is more visible for the dashed lines (i,e. on training

data). Finally, the ROC-based constraint induces as expected the equality of GS” and Ggl) as
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well as that of HS(O) and Hs(l) in the high score regime, as seen on the right plot. It implies
that ROCHgl),Ggo> and ROCHEO)’GEI) are much closer for simultaneously small TPR’s and FPR’s,
which implies that thresholding top scores will yield fair classifiers in FPR and TPR again for a
whole range of high thresholds.

Results for the dataset German. Recall that for this credit scoring dataset we consider
the AUC-based constraint in Eq. (10.5) to force the probabilities that a positive from a given
group is mistakenly ranked higher than a negative to be the same across groups. Despite the
blatant issues of generalization due to the very small size of the dataset (see Table 10.3), we see
in Fig. 10.8 that the learned score without fairness constraints systematically makes more errors
for women with good ground truth credit risk, as can be seen from comparing ROC 7 GO and
ROCHﬁo),Gil)‘
stochastically larger than that of women of the same credit risk assessment (see ROC c© g and
ROCHS” H§1>)' On the other hand, the score learned with an AUC constraint makes a similar
amount of mistakes for both genders, with only slightly more mistakes made on men than women,
and the scores s(X) conditioned on the events (Y =y, Z = z) with z = 0 and z = 1 are more
aligned when considering both y = —1 and y = +1. Finally, while the score learned with a ROC
constraint has a slightly higher discrepancy between the AUC’s involved in Eq. (10.5) than the

one learned with an AUC constraint, one observes that both pairs of distributions (G((go)7 Ggl))

and (H 5‘)), H s(l)) are equal for high thresholds. Consistently with the results on other datasets,
this suggests that our score leads to classifiers that are fair in FPR and TPR for a whole range
of problems where one selects individuals with very good credit risks by thresholding top scores.

Additionally, the credit score of men with good or bad credit risk is in both cases

10.6 Conclusion

In this chapter, we considered the issue of fairness for scoring functions learned from binary
labeled data. We proposed general notions of fairness based on the AUC criterion and the
ROC curves, and provided statistical guarantees for scoring functions learned via empirical AUC
maximization under such fairness constraints. From a practical perspective, we showed how to
implement stochastic gradient descent algorithms to solve these problems and illustrated our
concepts and methods via numerical experiments. We point out that our framework can be
extended to precision-recall curves (as they are a function of the FPR and TPR, Clémengon and
Vayatis (2009)) and to similarity ranking, a variant of bipartite ranking covering applications
like biometric identification Vogel et al. (2018). In future work, we plan to investigate how the
unrelaxed versions of our fairness constraints can be incorporated to ROC curve optimization
algorithms based on recursive partitioning, such as those developed in Clémengon et al. (2011);
Clémengon and Vayatis (2010).
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Figure 10.2: For Example 10.11, Ly(s.) as a function of ¢ € [0,1] for any A € {0,1}, with the
parametrization s.(z) = cx1 + (1 — ¢)zo, and the values ¢ for the scores obtained by gradient
descent with Algorithm 2.
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Figure 10.3: Values of the output scoring functions on [0, 1]? for Algorithm 2 ran on Example 10.11.

95% CI ROChp), g —— med ROCyo, o
[ 95% CI ROChw, 6w —— med ROCyp, g
71 95% CI ROCH,, G, —— med ROCy, g,
1.0 1.0
0.8 Ly 0.8
0.6 0.6
£ £
0.4+ 0.4 1
0.2 0.2 1
0.0 0.0
0.00 025 050 0.75 1.00 0.00 025 050 0.75 1.00
FPR FPR
(a) A=0 b) A=1

Figure 10.4: Result of Example 10.11 with Algorithm 2.
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Figure 10.5: On the left (resp. right), for Example 10.12, L(s.) (resp. La(s.)) as a function of
€ [0,1] for any A € {0,1} (resp. Ay € {0,1}), with the parametrization s.(z) = —cz1 + (1 —¢)x2,
and the values ¢ for the scores obtained by gradient descent with Algorithm 2 (resp. Algorithm 3).
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Figure 10.6: Values of the output scoring functions on [0, 1]? for Algorithm 3 ran on Example 10.12.
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Figure 10.7: Result of Example 10.12 with Algorithm 3.
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Figure 10.8: ROC curves for the databases Adult, Compas, Bank and German for a score learned
without and with fairness constraints. On all plots, dashed and solid lines represent respectively
training and test sets. Black curves represent ROCy, ¢, and above the curves we report the
corresponding ranking performance AUCy, ¢, .
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Chapter 11

Conclusion and Perspectives

This thesis proposed to study important problems in biometrics from the point of view of statistical
learning theory. Our work provides new theoretical results, which suggest original approaches
to these problems, and also provide security guarantees in the form of generalization results.
In that regard, it is a much-needed answer to the rapidly increasing volume of experimental
machine learning literature that biometrics researchers have to follow. Biometric identification,
and facial recognition in particular, incarnate many machine learning topics simultaneously, such
as pairwise learning, sample bias or ranking. For this reason, we considered stylized versions of
those problems, as their simultaneous examination would obscure our discourse, and runs the
risk of being disregarded as anecdotal by the machine learning community. The richness of the
topics tackled by the thesis is a result of this imperative.

Similarity Ranking Theory (Chapter 5 - Part II). First, we proposed to view similarity
learning from the perspective of bipartite ranking on a product space, a problem that we named
similarity ranking. From this point of view, we proposed another approach to similarity learning
that is better suited to the evaluation of biometric systems. In a context of rapid development of
the deep metric learning literature (Wang and Deng, 2018), this is a much-needed contribution.
We proposed generalization guarantees that extend known results for bipartite ranking. Our
analysis immediately suggest other approaches to similarity ranking, for example with extensions
of ranking the best criteria in bipartite ranking (Menon and Williamson, 2016, Section 9). Our
empirical illustration of the fast generalization rates for the pointwise ROC optimization problem
gives an intuitive interpretation of these rates. Since generalization bounds are formulated
as orders of n, they sometimes appear impractical. In that regard, future works could build
upon our illustration to convey the meaning of fast learning rates. Finally, our extension of
the TREERANK algorithm proposes a first practical approach to similarity ranking, with strong
theoretical guarantees. As far as we know, very few papers propose learning a piecewise constant
similarity. Future work could derive new methods to learn those and study their practical
performance, for example by building on top of the work of Clémengon and Vayatis (2010).

Distributed U-Statistics (Chapter 6 - Part IT). While the similarity ranking approach seems
natural, it comes with specific challenges, such as the usual computational complexity of pairwise
learning. In that regard, we exploited recent results on incomplete U-statistics (Clémengon
et al., 2016), to alleviate this problem. Additionally, we derived new estimators for estimating
U-statistics in a distributed environment, and compared their variance. Our statistical analysis
answers concerns regarding the lack of study of distributed computing frameworks from the
perspective of statistical accuracy, deplored for example in Jordan (2013). Finally, we proposed a
gradient-descent learning approach with our distributed estimators, which is shown to provide
trade-offs between communication costs and expected performance of the final model. While
our analyses are well suited to estimation, extending them for our distributed gradient-descent
algorithm is an open question. This extension is also a technical challenge, since the optimized
functional changes during the training process, which makes the analysis more complicated than
that of Papa et al. (2015). Performing the analysis would provide interesting results, as it applies
to the optimization of any pairwise loss optimized with batch gradient descent, a problem that
arises in many practical settings.

Practical Similarity Ranking (Chapter 7 - Part IT). Generalization guarantees justify con-
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sidering similarity ranking, while sampling techniques alleviate the computational costs associated
with similarity ranking. However, both contributions do not address the optimization challenges
that arise in that setting. From a biometrics perspective, the most important perspective in
this thesis is to realize the potential impact of the methods presented, by providing strong
empirical evidence of their relevance in practical settings. Indeed, while the rapid adoption of
machine learning techniques by private companies has boosted the growth of the field, it also
directed most of the attention to papers that propose unequivocal solutions to specific industrial
problems. A notorious example for face recognition is Schroff et al. (2015). In this direction, we
proposed gradient descent-based approaches that solve the pointwise ROC optimization problem,
as well as illustrations of the TREERANK algorithm for learning similarities, that we all ran
on simple toy examples. In that context, the promotion of this work will require finding and
presenting pedagogically large-scale experiments that address precisely practical use-cases, which
is a promising direction for future work.

Ranking the Most Likely Labels (Chapter 8 - Part III). Similarity ranking is the theo-
retical formalization of the flagship problem in biometrics, i.e. 1:1 identification. However, it
does not covers all of the realities addressed by biometric systems providers. For example, to
identify potential suspects in forensics, the objective is usually to return the most likely labels
from a database. More generally, hard classification problems — e.g. Russakovsky et al. (2014) —
consider other objectives than simple (top-1) classification to evaluate the performance of the
system. Notably, a popular alternative performance measure is top-5 classification. In that
context, the optimization customarily optimizes the query system for returning solely the best
element, since orderings over labels are derived from class probabilities learned by optimizing for
classification. The discrepancy between the risk functional and the evaluated objective suggests
that that approach is ill-suited. Our work proposes the first theoretically-guaranteed approach
to the prediction of a list of most likely results from classification data, by exploiting recent
results in ranking median regression (Clémengon et al., 2018). It relies on the famous One-Versus-
One (OVO) strategy for multiclass classification, and a byproduct of our analysis is the first
generalization guarantees for OVO. From the point of view of biometrics, we provide statistical
guarantees for criteria that are tailored to its specific objectives. Another common problem in
the field is the absence of a significant difference in matching score between positive and negative
instances, as ROC curves only evaluate order relations between the score of observations. In that
regard, future work could consider criteria that explicitly force the score function to discriminate
significantly between the two types of instances, i.e. with a large gap in score value. Beyond
that example, other settings could be addressed, for example by discussing the 1: N identification
problem described in Jain et al. (2011).

Selection Bias Correction (Chapter 9 - Part ITII). Another topic of interest in biometrics is
the representativeness of training databases with respect to the operating conditions of the systems.
Grother and Ngan (2019) measured practically the effects of biased databases in the context of
facial recognition. That report has shown that the predominance of white caucasian people in
training datasets makes the end algorithms more accurate on this specific type of population. To
correct for representativeness issues, we proposed a reweighting scheme inspired from the idea of
importance sampling (Bucklew, 2010, chapter 4), that adjusts for differences between the training
distribution and the testing distribution. Our reweighting scheme is practical, in all scenarios
where additional information is available on the relationship between the training and testing
data. Precisely, our work assumes the knowledge of characteristics of the test distribution that
can be summarized by a few finite values, such as class probabilities or the probabilities of specific
strata in the population. While additional information is available in many practical scenarios,
e.g. for a facial recognition system deployed in an airport that contains known proportions of
several nationalities, a few other approches were proposed to relate the training and testing
distributions. For example, Sugiyama et al. (2007) proposes to estimate a likelihood ratio with a
small sample of the test set as auxiliary information. Additionally, while the absolute continuity
assumption is necessary for importance sampling, Laforgue and Clémengon (2019) loosened that
assumption by considering several training samples. Therefore, a promising direction for future
work is the exploration of new ways to incorporate other types of auxiliary information during
training, and relate those to our contribution in a general framework.

Learning Fair Scoring Functions (Chapter 10 - Part IIT). Although accounting for the
representativeness of the databases may correct some of the flaws of a model, the distribution of
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the training data often contains other type of biases that should be explicitly addressed. On that
subject, the fairness in machine learning literature proposes approaches to balance the expected
responses of a system between two sensitive groups, e.g. men and women. Our work proposed to
learn scoring functions that are fair with respect to criteria based on usual ranking measures,
such as the AUC-based ones of Borkan et al. (2019), as well as a framework to unify all of the
AUC-based fairness criteria. Additionally, our work discussed the limitations of AUC criteria. In
reaction to those limitations, we introduce new fairness criteria, based directly on the ROC curve.
The usual approach when dealing with fairness constraints is to relax them, and then integrate
them with the performance indicator of the task as a penalty term. As we followed this rationale,
we could not explicit a notion of optimal fair score function. In the context of fair regression,
Chzhen et al. (2020) managed to derive an expression of the optimal fair regressor. In bipartite
ranking, overcoming this hurdle paves the way for an extension of the partition-based algorithms
algorithms of Clémencon and Vayatis (2009) under fairness constraints. Another possibility
concerns the extension of the techniques presented here to the case of similarity ranking. Indeed,
that extension gives a framework that matches operational considerations in biometrics very
closely, and would be justified by the current interest in methods to explicitly correct biases
for facial recognition. The experimental component of that work would be supported by the
availability of well-suited face databases (Wang et al., 2019).

Conclusion. In general, each topic discussed in the thesis could be further developed in several
natural ways, as presented in the manuscript. They could also be exploited to form at-scale
experiments that showcase the effectiveness of the suggested approaches, whereby bolstering their
adoption. Another possibility consists in using simultaneously the strategies of several topics,
while ensuring that their overlap covers an application of significant importance in the machine
learning community. Both of these last points are gateways to bringing more visibility to this
work. In conclusion, the richness of the issues that arise in biometrics makes for fertile grounds
for new theory and new practices in machine learning. This richness spurred the creation of this
thesis and can inspire future research.
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Chapter 12

Résumé (Summary in French)

12.1 Contexte

La thése est issue d’une collaboration entre la grande école Télécom Paris et la société IDEMIA. Le
projet s’appuie sur un contrat CIFRE (Convention Industrielle de Formation par la REcherche),
un type de contrat introduit en 1981 par le gouvernement francais pour renforcer les liens entre
les institutions de recherche et les entreprises privées. Le travail de recherche est donc supervisé
par les deux parties, ce qui est rendu possible dans notre cas par des interactions fréquentes.

Télécom Paris est 'un des principaux établissements publics frangais d’enseignement supérieur
et de recherche en France, et est membre de I'Institut Mines-Télécom (IMT) et de I'Institut
Polytechnique de Paris (IP Paris). L'IP Paris est un établissement public d’enseignement supérieur
et de recherche qui regroupe cinq prestigieuses écoles d’ingénieur francaises: I'Ecole Polytechnique,
ENSTA Paris, ENSAE Paris, Télécom Paris et Télécom SudParis. Sous les auspices de I'Institut,
ils partagent leur expertise pour développer des programmes de formation d’excellence et de
recherche de pointe. La recherche impliquée dans cette these a été effectuée au sein de I’équipe
Signal, Statistiques et Apprentissage (S2A) du Laboratoire de Traitement et Communication de
I'Information (LTCI). L’équipe de supervision académique était composée de Stephan Clémengon
et Anne Sabourin, tous deux membres de 1’équipe S2A, ainsi que d’Aurélien Bellet, chercheur &
PINRIA (Institut National de Recherche en Informatique et en Automatique).

IDEMIA est une société leader en matiere d’identification biométrique et de sécurité numérique.
La société est une fusion des sociétés Morpho et Oberthur Technologies, effectuée en 2017.
Oberthur technologies a été un acteur dominant dans les solutions de sécurité numérique pour le
monde mobile, tandis que Morpho était considéré comme le leader mondial de 'identification
biométrique. IDEMIA a pour objectif de faire converger les technologies développées pour
le secteur public (par I’ancien Morpho) et pour le secteur privé (par Oberthur Technologies).
Dans le secteur privé, les principaux clients de I’entreprise proviennent du secteur bancaire, des
télécommunications et des objets connectés. La these a commencé en 2017 avec Safran Identité
et Sécurité (anciennement Morpho) avant la fusion, lorsque Morpho était une filiale de la grande
entreprise d’aéronautique et de défense Safran. Tout au long de la these, Stéphane Gentric a
assumé la supervision continue de ce projet du coté industriel. Les responsables de 1’équipe
Advanced Machine Learning a IDEMIA: successivement Julien Bohné, Anouar Mellakh et Vincent
Despiegel, ont contribué de maniére significative a cette supervision.

12.2 Introduction

La biométrie est la discipline qui consiste a distinguer les individus sur la base de leurs attributs
physiques ou comportementaux tels que les empreintes digitales, le visage, l'iris et la voix. Dans le
monde moderne, la biométrie a de nombreuses applications essentielles, telles que la surveillance
des frontieres, le commerce électronique et le versement de prestations sociales. Bien que son
usage courant soit récent, la discipline n’est pas nouvelle. En effet, a la fin du XIXe siecle, l'officier
de police francais Alphonse Bertillon a proposé un systeme d’identification personnelle basé sur
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la mesure de parties osseuses du corps (Jain et al., 2011).

Aujourd’hui, la mesure biométrique la plus répandue est 'empreinte digitale, suivie par le visage
et l'iris. Toutes reposent sur I’acquisition d’images de parties spécifiques du corps. Ainsi, alors
que la biométrie est considérée par de nombreux auteurs comme un domaine distinct de la science,
son histoire et son développement sont étroitement liés avec celui de la vision par ordinateur,
le domaine scientifique interdisciplinaire qui vise a permettre aux ordinateurs d’acquérir une
compréhension de haut niveau des images numériques.

Au début des années 2010, les performances des systémes de vision par ordinateur ont commencé
a s’améliorer (Goodfellow et al., 2016), en raison du développement des calculs génériques sur
processeur graphique (GPGPU, General-purpose Processing on Graphics Processing Units). Ce
développement a permis ’adoption généralisée des réseaux de neurones, des modeles statistiques
composés de couches qui résument 'information, car leur entrainement bénéficie fortement d’une
multiplication treés rapide de matrices. L’entrainement des réseaux de neurones consiste a trouver
les parametres du réseau qui minimisent une fonction de perte avec des algorithmes de descente
de gradient. Ceux-ci modifient itérativement les parametres du réseau, en ajoutant une petite
quantité qui est négativement proportionnelle au gradient a chaque étape. L’intérét croissant
pour les réseaux de neurones a engendré un énorme corpus de littérature scientifique. La plupart
des articles proposent une meilleure architecture pour le modele, suggerent une amélioration de
la méthode d’optimisation ou introduisent une meilleure fonction de perte pour un probleme
particulier.

La littérature récente a proposé de nombreuses fonctions de perte pour la biométrie, basées sur
Pintuition qu’une séparation plus stricte des identités dans un espace de représentation entraine
une amélioration des performances (Wang and Deng, 2018). Le probleme phare de la biométrie
est la vérification 1:1, qui vise & vérifier I'identité d’une personne en comparant une mesure
en direct avec des données de référence avec une fonction de similarité. Par exemple, ’entrée
d’un individu dans une zone restreinte peut nécessiter la conformité de la mesure avec une carte
d’identification personnelle. La performance de la vérification 1:1 est évaluée a ’aide de la courbe
ROC, un critere fonctionnel qui résume la qualité d’une fonction de similarité. Pour un ensemble
de tests, la courbe ROC donne tous les taux de fausses acceptances et de faux rejet pouvant étre
atteints en seuillant la fonction de similarité. Il s’agit de la mesure référence pour 1’évaluation
des fonctions de score. Dans la these, nous plaidons pour 'exploitation de la littérature sur
Pordonnancement/scoring bipartite pour concevoir des fonctions de perte pour la vérification
1:1, en la considérant comme 1’évaluation d’un score sur des paires d’observations. Bien que la
littérature traite indépendamment des problemes de scoring et d’apprentissage sur paires, leur
examen simultané est nouveau et pose des défis particuliers.

Les récentes améliorations spectaculaires de la performance pour de nombreuses applications de
I’apprentissage automatique préfigurent I’émergence de nouveaux marchés, issus de la maturation
de technologies autrefois tres expérimentales. L’un de ces marchés est celui de la reconnaissance
faciale, qui a enregistré, et devrait maintenir, une croissance exponentielle. Son développement
a suscité une couverture médiatique des éventuelles utilisations abusives et biais systémiques
de la technologie, qui s’ajoutent aux préoccupations usuelles en matiere de protection de la
vie privée. Dans ce contexte, les praticiens et les organismes gouvernementaux ont enregistré
des différences de précision entre les ethnies dans la reconnaissance faciale (Grother and Ngan,
2019). Une explication courante est que les bases de données d’'images de visages disponibles pour
Ientrainement des systémes de reconnaissance faciale ne sont pas représentatifs de la population
générale. L’écart de performance souleve la question plus large de I’équité, une préoccupation
commune dans I’automatisation de décisions, et qui a recu une attention croissante dans la
littérature récente en apprentissage automatique (Barocas et al., 2019). Certains observateurs
ont méme commenté que les algorithmes prédictifs risquent d’étre simplement “des opinions
ancrées dans les mathématiques”. Selon cette idée, les praticiens ne devraient pas se concentrer
uniquement sur la performance prédictive, mais aussi s’assurer de la conformité de leur systéme a
un ensemble de valeurs morales. La biométrie est également concernée par ’équité. En effet,
méme lorsque la représentativité de la base de données en termes de genre est prise en compte, les
femmes ont généralement un taux de faux positifs plus élevé, possiblement en raison de normes
sociales concernant I’apparence. Cela peut conduire a une discrimination systémique, notamment
lorsqu’on considere des systemes qui signalent des personnes recherchées. Dans la these, nous
proposons d’abord de corriger les biais en utilisant des poids d’importance, ce qui ajuste la
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distribution des données d’entrainement. La correction couvre plusieurs cas ou les données
d’entrainement et de test ne correspondent pas, et suppose I'existence d’informations auxiliaires
sur un lien entre ces données. Le niveau de généralité ot nous nous plagons est nouveau, et couvre
de nombreuses applications importantes en biométrie. Ensuite, nous proposons de modifier les
fonctions de perte afin d’intégrer explicitement des considérations d’équité lors de I'apprentissage
d’un score pour 'ordonnancement bipartite. L’équité dans un contexte de classification est
I'objet de beaucoup de travaux dans la littérature, mais ce n’est pas le cas pour ’équité en
ordonnancement bipartite. Compte tenu de notre perspective de scoring sur le probleme de
vérification 1:1, ce travail est une étape intermédiaire dans l'intégration explicite de contraintes
d’équité dans ce probleme.

En général, de nombreuses questions abordées en apprentissage automatique se posent simul-
tanément dans la conception de systemes biométriques. L’objectif de cette these est d’identifier et
d’en aborder plusieurs du point de vue de 'apprentissage statistique, afin de: fournir des garanties
de sécurité basées sur des hypotheses probabilistes, et de proposer des solutions judicieuses aux
fabricants de systemes biométriques. A cet égard, la littérature habituelle sur "apprentissage
statistique traite de problémes simples, tels que la classification ou la régression (Boucheron et al.,
2005). Cependant, les problémes abordés en biométrie impliquent & la fois un apprentissage sur
paires et un critere fonctionnel, et nécessitent donc une analyse spécifique.

Plan du chapitre. Le chapitre présent résume les contributions des principales parties II et II1
de la these, et n’aborde pas la partie restante (Partie I). La partie I figure dans le manuscrit pour
des raisons de clarté et ne contient que des préliminaires techniques aux résultats théoriques des
autres parties. Le chapitre présent est organisé comme suit: premierement, la section 12.3 couvre
les idées présentées dans la breve introduction ci-dessus et donne un apergu détaillé de la these.
Deuxiemement, la section 12.4 se concentre sur la partie II et traite de 'ordonnancement par
similarité. Troisiemement, la section 12.5 résume les contributions de la partie III sur le vaste
sujet de la fiabilité des algorithmes d’apprentissage automatique. Enfin, la section 12.6 détaille
les perspectives de la these.

La section 12.3 est une introduction développée qui présente les aspects importants de la biométrie
qui sont abordés dans la littérature sur 'apprentissage automatique. Plus précisément, elle
présente d’abord la relation entre la biométrie et I’apprentissage de métriques, ainsi que I'impact
de I'apprentissage approfondi sur les deux domaines. Elle examine ensuite la nature des biais
dans la reconnaissance faciale, et détaille les dangers potentiels des biais du point de vue de
I’équité des algorithmes.

La section 12.4 est un bref résumé de la partie II. Elle se concentre sur 'idée de considérer
I’apprentissage de similarité comme un probleme de scoring sur un espace produit. Nous appelons
ce point de vue ordonnancement par similarité. A cet égard, elle commence par des garanties
théoriques pour ce probleme. Ensuite, elle propose des stratégies accompagnées de garanties
statistiques pour réduire la complexité de calcul en ordonnancement par similarité, et finit avec
plusieurs approches pratiques basées sur le gradient.

La section 12.5 est un bref résumé de la partie ITI, qui aborde le sujet de la fiabilité en apprentissage
automatique. A ce titre, elle propose d’abord une stratégie pour prévoir une liste ordonnée
des classes probables a partir de données de classification multiclasse, au lieu de se concentrer
uniquement sur la précision en classification. Ensuite, elle donne des stratégies pour faire face au
manque de représentativité des bases de données. Elle se termine par une proposition visant a
faire respecter des critéres d’équité dans le probleme de scoring.

La section 12.6 présente les perspectives de la these. Plus précisément, elle souligne 'importance
d’illustrations pratiques de ce travail pour les praticiens de la biométrie, et discute plusieurs
extensions possibles de nos analyses.

Les notations adoptées tout au long de la these sont résumées dans la table 12.1.

12.3 Défis récents en biométrie

Les progres récents dans le domaine de I'apprentissage profond ont entrainé des changements
rapides de I'état de I’art en biométrie. A cet égard, la littérature dite d’“apprentissage profond
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Notation description
w.r.t. with respect to: par rapport a
s.t. Subject to: tel que
r.h.s. Right-hand side: partie droite
l.h.s. Left-hand side: partie gauche
a.s. Almost surely: presque partout
r.0. Random wvariable: variable aléatoire
1.1.d. Independent and identically distributed: indépendant et identiquement distribué
c.d.f. Cumulative distribution function: fonction de répartition
p.d.f. Probability density function: fonction de densité
= Définition d’une variable
N Quantifieur universel
X =Y Application de X a Y
AT Transposée de la matrice A
%) Ensemble vide

Coefficient binomial

Permutation de {1,...,n}

Union (resp. intersection) entre les ensembles A et B
Différence symétrique entre les ensembles A et B
Cardinal de I’ensemble A

Complémentaire d’un ensemble A

Ensemble de toutes les parties d’un ensemble A
Inclusion d’ensembles

Fonction indicatrice

Image de la fonction f

Fonction de signe, sgn(z) = 2I{z > 0} — 1
Logarithme naturel

“Grand O“: Ordre asymptotique d’une quantité
Probabilité d’un événement

Espérance d’une variable aléatoire

Support de la distribution p

La r.v. X suit la distribution p

Mesure produit entre p et v

Masse de Dirac au point x

Fonction de survie pour la c.d.f. F, F=1—F
Inverse généralisé d’une fonction cadlag
Nombres naturels (resp. rééls)

RY = R,\{0}

Table 12.1: Résumé des notations.
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de métriques“ a proposé de nombreuses pertes dérivables, mais aucune d’entre elles n’est liée
a D’évaluation en termes d’ordonnancement des systémes biométriques. Simultanément, ces
avancées ont suscité un débat public sur les technologies biométriques, et en particulier sur
la reconnaissance faciale. Si la plupart des questions concernent l'utilisation des algorithmes
de reconnaissance faciale, 'une d’entre elles concerne leur biais racial, mesuré récemment. La
communauté de recherche en apprentissage automatique peut proposer des solutions techniques
pour ce probleme.

12.3.1 Introduction a la biométrie

Valeur sociale. La biométrie répond a la nécessité d’établir 'identité d’une personne avec une
grande confiance. Elle est devenue cruciale dans le monde moderne, car nous interagissons avec
un nombre toujours croissant de personnes. Toutefois, on peut retracer ses origines a la fin du
XIXe siecle, avec les premiers enregistrements de 1'utilisation d’empreintes digitales pour des fins
d’identification (Jain et al., 2011, Section 1.8). Aujourd’hui, la biométrie est largement utilisée
dans la police scientifique et dans d’autres applications gouvernementales, ainsi que par diverses
industries telles que le secteur bancaire. Un exemple d’application de la biométrie a grande
échelle est le projet Aadhaar, géré par I’ Unique IDentification Authority of India (UIDAI), qui
a assigné des numéros d’identification nationaux et a enregistré les biométries (iris, visages et
empreintes digitales) de plus d’un milliard de personnes (Jain et al., 2011, Section 1.6).

Formalisation des objectifs. L’objectif des systémes biométriques est de comparer deux
mesures (z,z’) dans un espace d’entrée X, par exemple deux empreintes digitales ou deux visages,
et de décider si les deux proviennent du méme individu. Cela se fait généralement au moyen
d’une fonction de similarité sur la paire s : X x X — R, qui quantifie la probabilité que = et x’
proviennent de la méme personne. La décision est prise en fixant un seuil de similarité, ce qui
signifie que 1’on considere que la paire (x,2’) est acceptée si s(z,z’) > t, ou ¢ est un seuil dans
R, . Il existe deux problemes phares en matiere de biométrie: la vérification et 1'identification
(Jain et al., 2011, Section 1.3). Le probleme de vérification est également appelé authentification
1:1. I est illustré par le cas d’utilisation du franchissement des frontieres, ot un officiel compare
un document z’ avec une mesure en direct x. Ainsi, il consiste & prendre une décision sur une
paire x,z’. L’identification est illustrée par le cas d’utilisation de la surveillance automatique, ou
une mesure en direct x est comparée a une base de données. Précisément, il s’agit de trouver
I'existence d’un élément correspondant a x dans une base de données de N € N observations
Dy = {z;}; = X. Si une telle correspondance existe, l'identification doit renvoyer les éléments
pertinents dans Dy . L’identification est également appelée identification 1:N ou authentification
1:N. Le nombre de personnes enrolées N peut étre important, et peut par exemple se compter en
millions.

Etapes opérationnelles. Pour comparer une observation x avec une grande base de données
Dy, il est nécessaire de comparer rapidement des représentations d’éléments dans X ayant des
besoins faibles en termes de mémoire. Cela nécessite la dérivation de représentations intermédiaires
efficaces des données d’entrée. Les systemes biométriques peuvent généralement étre divisés en
trois processus distincts: 1) 'acquisition de données d’entrée, appelée enrdlement, 2) extraction
de caractéristiques, parfois appelée codage des données, 3) et la comparaison des codages. Voir
(Jain et al., 2011, Section 1.2) pour plus de détails. Dans le contexte de la reconnaissance des
empreintes digitales, la phase d’enrélement couvre I'acquisition de la donnée brute, des étapes
de post-traitement, ainsi que des vérifications de qualité sur I'image finale. L’extraction de
caractéristiques consiste a appliquer des techniques de vision par ordinateur, suivie de techniques
spécifiques aux empreintes pour extraire des points précis dans le 'image des empreintes digitales.
Par exemple, des filtres de Gabor (Szeliski, 2011, Section 3.4.1) sont utilisés pour obtenir des
ridge orientations maps (cartes d’orientation des crétes) (Jain et al., 2011, Chapter 2) a partir
des images brutes d’empreintes digitales. Des points caractéristiques appelés minuties sont alors
extraits de cette représentation intermédiaire. Enfin, la comparaison repose sur ’évaluation d’une
distance entre les nuages de points associés aux deux images. Nous renvoyons & Jain et al. (2011)
(Section 2) pour plus de détails.

Extraction de caractéristiques. Le module qui a recu le plus d’attention dans la recherche en
biométrie est le module d’extraction de caractéristiques. Par exemple, les recherches sur la recon-
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naissance automatique des empreintes digitales ont consacré une quantité phénoménale de travail
pour trouver le plus d’information discriminante possible dans les images. En reconnaissance
faciale, 'extraction de caractéristiques a d’abord été basée sur les eigenFaces (Turk and Pentland,
1991), une application de I’Analyse en Composantes Principales (ACP) aux images de visage.
Ensuite, cette approche a été remplacée par la combinaison de descripteurs usuels en vision
par ordinateur — tels que les motifs binaires locaux (local binary patterns, LBP) et les descrip-
teurs d’images SIFT (Scale-Invariant Feature Transformer: transformation de caractéristiques
visuelles invariantes & I’échelle) — avec des techniques de réduction de la dimensionnalité. Enfin,
I'extraction de caractéristiques s’appuie désormais sur une approche de bout en bout — qui
effectuent la tache finale en utilisant les données brutes — basée sur des réseaux neuronaux
convolutifs profonds, un type de réseau de neurones adapté aux images (Wang and Deng, 2018).

Des algorithmes d’apprentissage de métriques servent a entrainer le module d’extraction de
caractéristiques. Récemment, ’avénement des algorithmes d’apprentissage profond a poussé les
chercheurs en biométrie a remplacer la combinaison de méthodes d’extraction de caractéristiques
spécifiques a la tache et de méthodes d’apprentissage de métriques linéaires, par un apprentissage
profond de métrique de bout en bout. Les chercheurs en biométrie doivent donc suivre de pres
les récents développements en apprentissage profond pour rester compétitifs.

12.3.2 Apprentissage profond de métriques pour la biométrie

L’apprentissage de métriques ou I'apprentissage de similarités est un probleme d’apprentissage
automatique dont le but est d’apprendre a quel point deux objets sont similaires. Nous renvoyons a
Bellet et al. (2015a) pour une revue. En biométrie, la supervision de ces algorithmes provient d’une
base de données de n images {z;}? ; < X, chaque image z; ayant une identité y; € {1,..., K}
avec K <n et (n,K) e N2

Apprentissage de métriques linéaires. Les premiers algorithmes d’apprentissage de métriques
et une grande partie de la littérature se concentre sur I’apprentissage de métriques linéaires.
L’expression se réfere aux distances ou aux fonctions de similarité s : X x X — R, qui sont
des fonctions linéaires de leurs entrées. Celles-ci reposent principalement sur 1'utilisation de
distances de Mahalanobis — une distance R? x R* — R, pour d € N, paramétrée par une matrice
semidéfinie positive M € R4*¢ — avec quelques exceptions reposant sur d’autres combinaisons
de M et de lentrée (x,z’). La distance de Mahalanobis dj; entre les points x et z’ s’écrit:

dy(z,2) = \/(x — T M(z — ).

La factorisation de Cholesky (Petersen and Pedersen, 2008, Section 5.5.1) implique que 'on
peut écrire M = LL", ot L est une matrice triangulaire inférieure. Ce résultat justifie le fait de
considérer les distances de Mahalanobis comme le calcul d’une simple distance euclidienne sur une
transformation des entrées, puisque das(z,2') = || Lz — La'||,, ot ||-||, est la distance euclidienne
standard. Parmi les approches notables pour ’apprentissage des distances de Mahalanobis, on
peut citer Valgorithme Mahalanobis Metric for Clustering (MMC, métrique de Mahalanobis
pour le partitionnement) en 2002 (Xing et al., 2002), Neighborhood Component Analysis (NCA,
analyse des composantes du voisinage) en 2004 (Goldberger et al., 2004), et Large Margin Nearest
Neighbor (LMNN, grande marge pour les plus proches voisins) en 2009 (Weinberger and Saul, 2009).
Plusieurs auteurs ont envisagé diverses extensions des algorithmes d’apprentissage de métriques
linéaires. Par exemple, la kernelisation des méthodes d’apprentissage de la métrique linéaire a été
proposée, ainsi que I'utilisation de plusieurs métriques linéaires locales, voir Bellet et al. (2015a)
(Section 5). Ces extensions se sont avérées utiles pour les praticiens de la reconnaissance faciale.
Par exemple, Bohné et al. (2014) considére Papplication de I'algorithme MM-LMNN (Weinberger
and Saul, 2009), qui apprend une métrique linéaire locale, & la reconnaissance faciale.

Apprentissage profond de métriques. En raison du développement du calcul générique
sur processeur graphique (GPGPU), 'apprentissage et I'utilisation de réseaux neuronaux tres
profonds sont devenus raisonnables. Ces réseaux ont eu pour effet d’améliorer considérablement
les performances en vision par ordinateur, notamment pour la tache de classification a grande
échelle sur le défi ILSVRC (ImageNet Large Scale Visual Recognition Challenge, challenge a
grande échelle de reconnaissance visuelle sur ImageNet). L’avancée la plus marquante sur ce
challenge a eu lieu en 2012 et est présentée dans Krizhevsky et al. (2012). Les résultats obtenus
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avec les réseaux profonds ont conduit a des avancées importantes en reconnaissance faciale, avec
notamment Taigman et al. (2014) en 2014. En apprentissage profond pour la reconnaissance
faciale, les données brutes x sont encodées dans un vecteur e(z), ot e : X — R? est une fonction
non linéaire qui correspond a la sortie d’un réseau de neurones. Ensuite, une simple distance
est calculée entre e(z) et e(z’) pour décider si la correspondance entre x et a’ est acceptée.
L’encodage e est optimisé par une descente de gradient qui minimise une fonction de perte.
Contrairement a d’autres biométries populaires telles que les empreintes digitales et 'iris, trouver
manuellement les traits distinctifs importants d’'un visage est difficile. Par conséquent, une
approche de bout en bout basée sur 'apprentissage par descente de gradient est tres bien adaptée
a la reconnaissance faciale. Néanmoins, certains auteurs ont déja proposé des approches basées
sur ’apprentissage profond de métriques pour d’autres biométries (Minaee et al., 2019).

Fonctions de perte pour apprentissage profond de métriques. L’apprentissage profond
de métriques, avec ses modeles de bout en bout, a remplacé le processus composé séquentiellement:
d’une sélection par le praticien de caractéristiques importantes suivie d’une étape de réduction
de la dimensionnalité, comme l'illustre le treés influent article de Schroff et al. (2015). Pour cette
raison, de nombreux auteurs se concentrent sur la recherche de meilleures architectures de réseaux
de neurones. Simultanément, I’avenement de I’apprentissage par descente de gradient a ouvert
la voie & de nombreux articles les fonctions de perte. Les premiers systémes de reconnaissance
faciale utilisaient I'habituelle perte d’entropie croisée softmax (SCE, softmaz cross-entropy), une
perte de classification usuelle dans ’apprentissage profond qui cherche a séparer les identités
(Goodfellow et al., 2016, Section 3.13). Depuis lors, de nombreuses autres fonctions de perte
ont été proposées, telles que ArcFace (Deng et al., 2019). Nous renvoyons & Wang and Deng
(2018) (Figure 5) pour un apergu des pertes pour la reconnaissance faciale. Leur objectif est soit:
d’augmenter la marge entre les identités pour diminuer la variance inter-classe, regrouper toutes
les observations de chaque identité pour diminuer la variance intra-classe, ou combiner les deux
approches comme le fait la perte par triplets (triplet loss) (Schroff et al., 2015). Les praticiens
ont observé que le fait d’additionner différentes pertes, tout en ajustant la proportion de chaque
perte était nécessaire pour optimiser les performances (Parkhi et al., 2015).

Evaluation basée sur ’ordonnancement. La performance des systemes de reconnaissance
faciale est mesurée sur la courbe ROC, comme le montre les évaluations de systémes commerciaux
de reconnaissance faciale par Grother and Ngan (2019). Ces évaluations ont été menées par le
National Institute of Standards and Technology (NIST, Institut national des normes et de la
technologie) une agence du département du Commerce des Etats-Unis. La courbe ROC est le
standard dans ’évaluation des fonctions de score en ordonnancement bipartite, un probleme qui
vise a attribuer des scores plus élevés aux éléments associés a un label positif +1 qu’aux éléments
avec un label négatif —1. Nous renvoyons & Menon and Williamson (2016) pour une revue sur
I'ordonnancement bipartite. Dans ce contexte, les fonctions de similarité peuvent étre considérées
comme des fonctions de score sur un espace produit. Cette observation suggere que 'utilisation
du vaste corpus de recherche sur 'ordonnancement bipartite est une approche justifiée pour
proposer de meilleures fonctions de perte pour la reconnaissance faciale, ce que nous faisons a la
fois dans la partie II, et dans le chapitre 8 contenu dans la partie III.

Récemment, des améliorations rapides en termes de précision ont été observées en reconnaissance
faciale, qui ne requiert pas que l'individu soit coopératif. Ainsi, la technologie a récemment attiré
I’attention des médias et de 'opinion publique. En plus des préoccupations usuelles en matiere de
protection de la vie privée, les observateurs ont exprimé des inquiétudes croissantes concernant le
manque de fiabilité ou 'injustice éventuelle induite par la reconnaissance faciale.

12.3.3 Fiabilité en biométrie

Les récents progres en matiere de reconnaissance faciale ont confirmé la maturation de la
technologie, ce qui préfigure son déploiement et a provoqué un large débat a ce sujet. Gates (2011)
a mis en garde contre la tendance du public a extrapoler sur 'omniprésence de ces systemes, ce
qui crée une l'illusion d’une surveillance qui modifie les comportements. Cependant, les obstacles
techniques énoncés par Gates (2011) semblent beaucoup plus faibles aujourd’hui. Précisément,
des travaux tels que Schroff et al. (2015) montrent la capacité des systémes de reconnaissance
faciale dans des conditions d’acquisition tres peu controlées. De plus, certains observateurs ont
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Figure 12.1: Ce graphique montre que la fixation d’un seuil pour les faux positifs (appelé taux de
fausse acceptance (FAR) en reconnaissance faciale) de o = 1075 pour la population générale peut
donner un taux de faux positif bien plus élevé lorsqu’il est utilisé sur un autre type de population.
Plus précisément, il donne o = 10728 pour une population originaire de Polynésie.

prévu un taux de croissance annuel composé (TCAC) — c’est-a-dire une progression géométrique
moyenne — de 14,5 % par an entre 2020 et 2027 pour le marché mondial de la reconnaissance
faciale. Dans ce contexte, les questions relatives au déploiement de la reconnaissance faciale et des
autres technologies d’apprentissage automatique appartiennent au domaine du législateur, mais
les décisions des modeles sont de la responsabilité du praticien en apprentissage automatique.

Biais dans la reconnaissance faciale. Dans le cas spécifique de la reconnaissance faciale, le
NIST a quantifié avec précision une moindre performance pour la reconnaissance de personnes de
couleur, avec les caucasiens comme classe de référence. La figure 12.1 illustre leurs travaux et
provient de Grother and Ngan (2019). Cette observation a été reprise par de nombreux médias
et a été qualifiée de ”biais racial” en 2019. La principale justification pour cet écart fut que
les bases de données utilisées pour I'entrainement de ces systéemes sont généralement composés
de personnalités européennes ou d’Amérique du Nord, qui sont pour la plupart des caucasiens
et ne représentent pas la population générale. Les auteurs ont interprété cette observation
comme un “other race effect“ (littéralement, effet d’autre ethnicité) pour la reconnaissance faciale
automatique, une idée introduite dans Furl et al. (2002) et Phillips et al. (2011), qui dit que les
humains ont généralement du mal a distinguer les individus d’une ethnie différente de la leur.
Certains auteurs ont proposé des stratégies pour corriger ce probléme explicitement (Wang et al.,
2019). Plus généralement, une large littérature sur ’équité en apprentissage automatique peut
étre invoquée pour aborder ce probleme (Bolukbasi et al., 2016; Zhao et al., 2017; Hendricks
et al., 2018; Liu et al., 2016; Huang et al., 2006). Le chapitre 9 dans la partie III contribue & cet
effort, en proposant une méthode générale de repondération qui s’applique aux problemes de
représentativité en biométrie.

Limites de la représentativité des bases de données. Bien qu’il soit important de disposer
d’une base de données représentative de la population cible, on ne peut pas s’attendre a ce que
cela corrige les biais inhérents aux données d’entrainement. Précisément, méme si un groupe
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social identifié par des attributs protégés tels que la race ou la religion est en moyenne beaucoup
plus pauvre qu’'un autre groupe social, il peut étre considéré comme immoral de refuser un prét
au motif qu'un demandeur appartient au premier groupe. Dans ce contexte, certains observateurs
ont brutalement qualifié les algorithmes prédictifs d’”opinions intégrées dans des mathématiques”
(O’Neil, 2016).

Equité algorithmique. Un grand nombre de travaux (Agarwal et al., 2018; Woodworth et al.,
2017; Zafar et al., 2017a,b, 2019; Menon and Williamson, 2018; Bechavod and Ligett, 2017) sont
apparus sur le theme de 1’équité en 'apprentissage automatique — également appelée équité
algorithmique — qui est un nouveau domaine d’étude. Ceux-ci cherchent a ajouter des contraintes
explicites durant la phase d’entrainement afin que des optimisations brutales de la précision ne
conduisent pas a la reproduction systémique d’injustices sociales. Les premiers travaux influents
remontent & 2012 (Dwork et al., 2012). Plus récemment, des auteurs ont travaillé sur un manuel
consacré a ce sujet (Barocas et al., 2019).

Equité en reconnaissance faciale. Dans la reconnaissance faciale, I’incorporation de con-
traintes d’équité lors de 'apprentissage des modeéles peut corriger le fait que certains groupes
sociaux sont plus difficiles a identifier que d’autres. C’est une nécessité dans de nombreux cas
pratiques. Par exemple, si un systéme congu pour signaler des personnes d’intérét a un taux plus
élevé de fausse acceptance pour une ethnicité spécifique, cela peut étre interprété comme du
profilage racial automatique.

Littérature scientifique sur 1’équité. La littérature scientifique sur I’équité pour le probleme
de classification est vaste, mais il existe peu de travaux pour des contextes spécifiques, tels que
I'ordonnancement ou 'apprentissage de similarités. Parmi les exceptions notables, citons Beutel
et al. (2019) pour 'ordonnancement, qui utilise une étape de post-traitement pour modifier une
fonction de score afin de satisfaire un critere d’équité. Cela laisse entrevoir la possibilité de
nouvelles approches pour 1’équité spécifiquement adaptées a ces problemes importants, ce que
nous proposons dans le chapitre 10 contenu dans la partie III.

Dans son ensemble, la these participe au dialogue entre la communauté de ’apprentissage
automatique et celle de la biométrie. Elle propose une vision stylisée et théorique de challenges en
biométrie, qui s’appuie sur la littérature récente pour étudier les criteres spécifiques — c’est-a-dire
fonctionnels et basés sur les paires — qui sont abordés en biométrie. Nous espérons que notre
point de vue sur les problemes biométriques aura des répercussions bénéfiques sur la pratique.
De plus, la dérivation de garanties statistiques pour les systéemes biométriques constitue un outil
important pour s’assurer de leur sécurité.

12.3.4 Plan de la theése

La these est divisée en trois parties. La partie I de la these contient des préliminaires techniques, qui
fournissent tous les résultats intermédiaires nécessaires pour prouver les contributions théoriques
de la these. Elle est comprise dans la these pour des raisons de clarté. La partie IT et III se
concentrent sur nos contributions. La partie II se penche sur 'idée de considérer I’apprentissage
de similarité comme un probleme de scoring sur un espace produit. La partie III est centrée
autour de l'idée générale de la fiabilité des algorithmes d’apprentissage automatique.

La partie I est divisé en trois chapitres. Le premier chapitre (Chapitre 2) est une introduction
rapide a la théorie de 'apprentissage statistique. Il présente les résultats nécessaires pour
obtenir des garanties de généralisation dans le cas facile de la classification binaire. Il détaille
précisément la dérivation de bornes & nombre de données fini sur ’excés de risque du minimiseur
empirique. La plupart de nos contributions théoriques peuvent étre interprétées comme des
extensions de ces résultats, mais nos contributions concernent des probléemes plus complexes.
Le deuxieme chapitre (Chapitre 3) traite de tous les résultats requis qui concernent 'idée
d’ordonnancement en apprentissage automatique. Nos contributions s’appuie sur deux themes
liés a 'ordonnancement: ’ordonnancement bipartite et ’agrégation d’ordonnancements. En effet,
notre travail étend les garanties existantes en ordonnancement bipartite a ’'ordonnancement
par similarité présenté dans la partie II. L’agrégation d’ordonnancement est utilisée pour le
bagging (bootstrap aggregating, une méthode pour 'aggrégation de modeles statistiques) d’arbres
d’ordonnancement, et les garanties du premier chapitre de la partie III sont construites sur un
modele paramétrique pour les ordonnancements, qui peut étre considéré comme un outil pour
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lagrégation d’ordonnancements. Enfin, le troisitme et dernier chapitre (Chapitre 4) présente
une breve introduction a d’importants résultats sur les U-statistiques, une type de statistique
présente dans tous les problemes d’apprentissage par paires. A ce titre, le chapitre 4 est un
pré-requis a nos garanties pour 'ordonnancement par similarité, et intervient lors de ’estimation
de fonctions de risque dans le cadre de 'ordonnancement bipartite standard.

La partie IT explore I'idée de considérer le probleme de vérification biométrique comme ’ordonnan-
cement de paires d’instances. Il est divisé en trois chapitres. Le premier chapitre (Chapitre 5)
présente formellement 1’idée de voir apprentissage de similarité du point de vue de I'optimisation
de la courbe ROC. Il propose de nouvelles garanties pour le probleme de 'optimisation de
la courbe ROC en un point, qui cherche a optimiser le taux de vrais positifs avec une limite
supérieure sur le taux de faux positifs. Cette analyse ouvre la voie a une extension des garanties
des garanties de l'algorithme TREERANK a 'apprentissage de similarité, que nous fournissons.
A Taide de simulations numériques, nous produisons la premiere illustration empirique des
vitesses d’apprentissage rapide, adaptées ici au cas spécifique de I'optimisation de la courbe ROC
en un point pour 'ordonnancement par similarité. En raison du nombre prohibitif de paires
impliquées dans les calculs, les propositions du premier chapitre ne sont pas raisonnables pour une
application a grande échelle. Pour y remédier, les statisticiens ont proposé des approximations par
échantillonnage pour les U-statistiques, une approche utile pour 'ordonnancement par similarité.
Le deuxieéme chapitre (Chapitre 6) étend cette proposition aux contextes ou les données sont
dans un environnement distribué. Enfin, le troisiéme chapitre (Chapitre 7) est plutdt prospectif
et propose des expériences numériques simples sur I’ordonnancement par similarité, qui abordent
la question de l'optimisation pour ce probléme. Etendre ces expériences fera l'objet de travaux
futurs.

La partie III est la derniere partie de la these. Elle s’articule autour de l'idée de fiabilité en
apprentissage automatique et est également divisée en trois chapitres. Le premier chapitre
(Chapitre 8) donne des garanties d’apprentissage pour la prédiction d’un ordonnancement sur les
classes possibles en utilisant seulement des données de classification multiclasse, ce qui repose
sur l'utilisation d’une stratégie OVO (One-Versus-One, un-contre-un). Ce probléme se pose
souvent dans des problemes bruités ou incertains, c’est-a-dire pour lesquels la classe la plus
probable a de bonnes chances d’étre un faux positif. Dans ce contexte, on s’intéresse alors aux
classes les plus probables, comme c’est souvent le cas dans les enquétes criminelles. Le deuxieme
chapitre (Chapitre 9) propose des techniques pour corriger le biais observé entre un échantillon
d’entrainement et celui de test, en utilisant des informations auxiliaires concernant la différence
entre les deux. Il repose sur 'application du principe bien connu d’échantillonnage préférentiel
en statistique. Enfin, le troisiéme chapitre (Chapitre 10) propose une unification d’une classe de
contraintes d’équité, ainsi qu'une nouvelle contrainte d’équité, plus restrictive et plus adaptée
aux situations concretes. Il comporte également des garanties théoriques, ainsi que des approches
pratiques basées sur le gradient pour apprendre sous les deux types de contraintes.

Le dernier chapitre de la these (Chapitre 11) contient un résumé des contributions de la partie II
et III, ainsi qu’un compte rendu détaillé des orientations les plus prometteuses pour de futurs
travaux. Il se termine par une conclusion générale sur la these.

Les deux sections suivantes de ce chapitre — les sections 12.4 et 12.5 — résument les contributions
de la these. Chaque section se concentre respectivement sur la premiere et la deuxiéme partie
de la these, et est divisée en sous-sections qui résument chaque chapitre de la partie. Enfin, la
section 12.6 résume les perspectives de la these.

12.4 Ordonnancement par similarité

L’apprentissage de similarité joue un role clé dans de nombreux problemes d’apprentissage
automatique comme le partitionnement, la classification ou la réduction de la dimensionnalité.
Cette technique est particulierement importante lorsqu’on considere des problemes dits “en
monde ouvert” — c’est-a-dire pour lesquels un modele rencontre des classes qui n’étaient pas
disponibles pendant I'entrainement au moment du déploiement (Chen et al., 2018) — ce qui est
le cas pour toute application biométrique. Dans cette section, nous considérons I’apprentissage de
métrique du point de vue du scoring de paires d’instances, ce qui est cohérent avec I’évaluation
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de nombreux systemes basés sur des techniques d’apprentissage de métrique.

12.4.1 Théorie de 'ordonnancement par similarité

L’ordonnancement /scoring bipartite considére un ensemble d’éléments associés & un label binaire,
et cherche a classer ceux qui ont le label +1 plus haut que ceux qui ont le label —1. Pour
obtenir un ordre sur un espace d’entrée X', 'ordonnancement bipartite repose généralement sur
Papprentissage d’une fonction de score s : X — R (Menon and Williamson, 2016). D’autre
part, apprentissage de métrique/similarité (Bellet et al., 2015a) est la tdche d’apprendre une
similarité — ou de maniere équivalente, une distance — s : X x X — R sur l’espace produit X x X.
Alors que les algorithmes d’apprentissage de métrique ont été évalués a ’origine par rapport &
leur pertinence pour une téche de partitionnement (Xing et al., 2002), les praticiens utilisent
aujourd’hui des indicateurs de performance dérivés de la courbe ROC, la mesure standard pour
I’évaluation des fonctions de score en ordonnancement bipartite. Par conséquent, notre travail
introduit sous le nom d’ordonnancement par similarité 1'idée d’apprendre des similarités pour un
objectif d’ordonnancement.

Un critere fonctionnel: la courbe ROC. Dans le cadre de la classification multiclasse, nous
introduisons une paire aléatoire (X,Y) € X x {1,..., K}, avec K € N le nombre de classes,
ainsi qu'une copie indépendante (X’,Y”’) de (X,Y’). Ensuite, nous pouvons définir une variable
Z =2-I{Y =Y’} — 1 égale a 1 si les deux paires appartiennent & la méme classe et & —1 sinon.
La courbe ROC d’une fonction de similarité est alors égale au PP-plot (Probability-Probability

plot, représentation utilisée pour comparer deux distributions réelles) t € R — (H,(t), Gs(t)), ot
pour tout t € R:

Hi(t) =P{s(X,X')>t|Z=—-1} et Git):=P{s(X,X)>t]|Z=+1}.

N

H,(t) et G4(t) sont respectivement le taux de faux positifs et de vrais positifs associés & la
similarité s. Sous des hypotheses de continuité, la courbe ROC s’écrit comme le tracé de la
fonction a € (0,1) — ROC,(a) = G4(t) o H7'(a). Certaines approches en apprentissage de
similarité optimisent une version empirique de I’aire sous la courbe ROC (AUC, Area Under the

Curve) de la fonction de similarité s (McFee and Lanckriet, 2010; Huo et al., 2018).

Optimisation en un point de la courbe ROC (pROC). L’AUC est un résumé global de la
courbe ROC qui pénalise les erreurs d’ordonnancement, quelle que soit la position des instances
concernées dans la liste (Clémengon et al., 2008, Proposition B.2). D’autres critéres se concentrent
sur le haut de la liste (Clémengon and Vayatis, 2007; Huo et al., 2018), et leur étude est ’'objet de
la littérature sur 'ordonnancement des meilleures instances (ranking the best instances) (Menon
and Williamson, 2016, Section 9). Dans notre travail, nous envisageons d’optimiser le taux de
vrais positifs atteint par une similarité sous contrainte d’une limite supérieure o € (0,1) sur
son taux de faux positifs. Ce probleme est pertinent dans les applications biométriques, car les
garanties de sécurité sont généralement spécifiées par une borne supérieure sur un taux de faux
positifs acceptable pour un systeme. Nous appelons ce probleme pointwise ROC optimization
(pROC). Nous considérons des risques:

R (s):=E[s(X,X)|Z=—-1] et  R(s):=E[s(X,X")|Z = +1],
avec S une famille de fonctions de similarités candidates, le probleme pROC s’écrit:

max R*(s) avec R™(s) < a. (12.1)
SE

Nous définissons s* comme la solution de Eq. (12.1). Notons que Clémengon and Vayatis (2010)
ont étudié 1’équivalent de Eq. (12.1) dans le cas ordonnancement bipartite. Ce probleéme est
analogue a la classification de Neyman-Pearson (Scott and Nowak, 2005), et ressemble beaucoup
au probleme d’apprentissage d’ensembles de volume minimum (Scott and Nowak, 2006). Lorsque
S est la classe de toutes les fonctions mesurables, la solution de Eq. (12.1) s’écrit comme un
ensemble de sur-niveau de la probabilité a posteriori 9 : z, 2’ — P{(X, X’) = (z,2') | Y =Y}, ce
qui est une conséquence du lemme fondamental de Neyman-Pearson (Lehmann and Romano,
2005, Théoreme 3.2.1).

Estimateurs sur paires. L’analyse de Clémengon and Vayatis (2010) repose sur le fait que
les estimateurs naturels de R~ (s) et de R*(s) sont des moyennes empiriques usuelles dans le
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cas de 'ordonnancement bipartite. Cependant, ce n’est pas le cas pour 'ordonnancement par
similarité. Considérons un échantillon D,, = {(X;,Y;)}?; composé de n copies i.i.d. de la paire
(X,Y), ainsi que les estimateurs naturels de R~ (s) et R*(s) basés sur 1’échantillon D,,:

Ras) = = STV # i} - 5(X0, X;), (12.2)
Ri(s) i= — Y IV = Y} - s(X0, X;), (12.3)
N+ i

ouny =3, I{Y; =Y;} et n_ =:n(n—1)/2—n,. Les quantités de Eq. (12.2) et Eq. (12.3)
ne sont pas des sommes de variables aléatoires indépendantes, et ’analyse de Clémencon and
Vayatis (2010) ne s’applique alors pas & ce cas. Cependant, il s’agit de ratios de statistiques bien
connues, les U-statistiques (Lee, 1990; de la Pena and Giné, 1999).

Garanties de généralisation pour pROC. La version empirique de pROC (Eq. (12.1)) s’écrit:

max ]%:{ (s) avec R (s) <a+ ¢, (12.4)
S

oll ¢ = 0 est un terme qui tolere les variations de R;, (s) autour de son espérance R~ (s). Nous
écrivons s, la solution de Eq. (12.4). La généralisation d’inégalités de concentration standard
aux U-statistiques nous permet d’étendre directement les garanties uniformes de Clémencon and
Vayatis (2010). Précisément, nous garantissons simultanément qu’avec une forte probabilité:
R*(s*)—R™*(s,) est limité par une quantité d’ordre n="2 et R~ (s,) < a+¢, avec ¢,, = O(n~1?).
En résumé, nous montrons que l'exces de risque est borné par la vitesse d’apprentissage usuelle
en n~ /2 en I’absence d’hypotheses sur la distribution des données.

Vitesses de généralisation rapide pour pROC. Dans le cas de la classification binaire et
sous une hypothese de bruit paramétrée par a € (0,1) sur la distribution des données, Mammen
and Tsybakov (1995) ont montré qu’on obtient une vitesse d’apprentissage rapide en O(n~1/(2=)),
La vitesse rapide est la conséquence d’une limite supérieure sur la variance de l’excés de risque,
elle-méme dérivée de 'hypothese du bruit. L’analyse de Clémengon and Vayatis (2010) s’est
appuyée sur ces idées pour proposer une limite supérieure sur R* (s*) — R*(s,) en O(n~(3+2)/4)
avec des garanties en O(nfl/ 2) pour R~, pour pROC en ordonnancement bipartite. Par rapport
a la classification binaire, le probleme pROC a une vitesse d’apprentissage plus faible, issue de la
nature bilatérale de pROC. Notre travail étend les vitesses rapides de Clémengon and Vayatis
(2010) pour l'ordonnancement bipartite au cas de 'ordonnancement par similarité. Incidemment,
le résultat est vrai sous des hypotheses beaucoup plus faibles. Précisément, il repose sur la
seconde décomposition de Hoeffding pour les U-statistiques (Hoeffding, 1948), qui implique que
la variance de I'exces de risque consiste essentiellement en la variance de sa projection de Hajek.
Comme la projection de Hajek est une transformation qui réduit la variance d’une U-statistique
(van der Vaart, 2000, Section 11), des hypotheses plus faibles impliquent la limite supérieure
de la variance nécessaire pour des vitesses d’apprentissage rapides. Clémencon et al. (2008)
contient cette utilisation des propriétés des U-statistiques dans ’objectif de dériver des vitesses
de convergence rapides, mais ne ’a jamais appliqué a des problemes comportant une contrainte
aléatoire dans le programme d’optimisation.

Illustration empirique des vitesses rapides. Notre travail contient également la premiere
illustration expérimentale des vitesses rapides d’apprentissage, sur notre probleme spécifique
d’ordonnancement par similarité. Cette illustration repose sur la génération de données satisfaisant
I’hypothese de bruit pour différents parametres de bruit a € (0,1), et d’une comparaison de leurs
vitesses d’apprentissage empiriques. Nous avons choisi la distribution des données et la famille de
propositions S afin que la similarité optimale s* soit connue et telle que le minimiseur empirique
Sp puisse étre trouvé exactement. Pour ces raisons, nous avons défini & comme étant un decision
stump (arbre de décision de profondeur 1) sur une transformation fixe des données.

Limites de pROC. Alors que le probleme de pROC fait écho a des considérations pratiques en
biométrie, ou les systemes sont déployés pour fonctionner a un taux fixe de faux positifs «, sa
résolution empirique est difficile en pratique. Les rares exceptions reposent sur un partitionnement
fixé de I'espace d’entrée (Scott and Nowak, 2006). Dans de nombreuses situations, le taux de
faux positifs a pour un systéme est inconnu a I’avance, et ’optimisation pour un mauvais a peut
ne pas donner de résultats satisfaisants au déploiement.
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TreeRank pour ’ordonnancement bipartite. L’algorithme TREERANK pour l'ordonnan-
cement bipartite a été introduit dans Clémengon and Vayatis (2009). TREERANK apprend
une fonction de score constante par morceaux sp,, construite pour fournir une estimation
adaptative et linéaire par morceaux de la courbe ROC optimale. Comme le suggerent les solutions
optimales de Eq. (12.1), la courbe ROC optimale ROC* est celle de la probabilité a posteriori
7. TREERANK sépare récursivement I’espace d’entrée X et optimise de fagon gloutonne ’AUC
a chaque séparation, et forme ainsi un arbre binaire de profondeur D,, basé sur des partitions
imbriquées de ’espace d’entrée X. Sous des hypotheses spécifiques, Clémencon and Vayatis
(2009) ont prouvé des bornes uniformes sur la norme sup entre la courbe ROC optimale et celle
de sp, lorsque D,, ~ 4/log(n), c'est-a-dire qu’avec une grande probabilité:

sup |ROC;,, (a) — ROC*(a)| < exp(—Ay/log(n)), (12.5)

«€el0,1]

ol A est une constante spécifiée par I'utilisateur.

TreeRank pour 'ordonnancement par similarité. Notre travail propose une extension
de I'algorithme TREERANK pour I'apprentissage de similarité, en considérant des séparations
récursives de I'espace produit X' x X. Afin de s’assurer que la similarité s est symétrique, nous
considérons seulement des séparations symétriques par rapport aux deux arguments de ’espace
d’entrée X — R4, en séparant I’espace sur la simple reparamétrisation suivante de X' x X

ity (721,

T+ .

En utilisant les mémes extensions des inégalités de concentration classiques aux cas des U-
statistiques qu’auparavant, nous avons étendu la preuve de Eq. (12.5) a 'ordonnancement par
similarité. Notre analyse fournit une approche fondée théoriquement pour ’apprentissage de
similarités qui s’approchent de la courbe ROC optimale en norme sup.

Nous ayons prouvé des garanties théoriques pour nos approches d’ordonnancement par similarité,
mais les estimateurs des fonctions de risque nécessitent le calcul de sommes comprenant un
trés grand nombres de termes. Ce cout de calcul rend 'application pratique de ces approches
inabordable. Par exemple, le calcul de R, (s) nécessite la somme de n_ termes, une quantité
quadratique en n quand K est constant. Dans une application biométrique typique, le nombre
d’échantillons par classe est fixe. Ainsi, la proportion de paires négatives n_ sur ’ensemble des
paires n? est encore plus élevée que dans le cas K constant. La section suivante exploite des
analyses récentes concernant ’approximation de U-statistiques afin d’atténuer ce probleme.

12.4.2 U-statistiques distribuées

La plupart des applications biométriques nécessitent un apprentissage sur de tres grands volumes
de données. En reconnaissance faciale, la plus grande base de données mise a la disposition du
public contient 8,2 millions d’images (Guo et al., 2016) et certaines bases de données privées
sont bien plus grandes. Cela illustre les problemes d’échelle présentés a la Section 12.4.1, car
le nombre de paires négatives est supérieur & 50 trillions (10'?) pour Guo et al. (2016). Outre
une limite en termes de nombre d’opérations, ces ensembles de données ne peuvent souvent pas
étre contenus dans la mémoire vive (RAM) d’une seule machine. Dans notre travail, nous avons
proposé une approche pour I'estimation de U-statistiques dans un environnement distribué, qui
concerne ces deux limites pratiques simultanément.

U-statistiques incompletes. L’idée d’alléger la complexité de calcul des statistiques U n’est
pas nouvelle, étant donné que Blom (1976) proposait déja l'utilisation un petit échantillon de B
paires sélectionnées par tirage aléatoire avec remise dans I’ensemble de toutes les paires pour
former des U-statistiques incomplétes en 1976. Clémencon et al. (2016) propose une borne
supérieure, vraie avec une grande probabilité, sur ’écart entre une U-statistique incomplete Up
et la statistique complete U,,. Dans le cas d'une U-statistique de degré deux a un échantillon
— c’est-a-dire une moyenne sur toutes les paires pouvant étre formées avec un échantillon — la
borne implique qu’'un estimateur Up utilisant seulement B = n paires suffit pour retrouver la
vitesse d’apprentissage usuelle en =2 plut6t que d’additionner toutes les n(n — 1)/2 paires
pour calculer U,. Ce résultat implique que I'on peut étendre les résultats présentés ci-dessus
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pour 'ordonnancement par similarité, afin de travailler avec des U-statistiques incompletes, ce
qui rend le probléme raisonnable pour tout contexte ou l'on a de grands volumes de données.

Environnements distribués. Dans les cas ou les données ne tiennent pas sur une seule
machine, les récents progres technologiques en matiere de bases de données distribuées et le calcul
parallele ont rendu accessible le déploiement d’algorithmes d’apprentissage automatique dans
un environnement distribué, en grande partie grace au développement de frameworks pour le
calcul sur grappes de serveur, comme Apache Spark (Zaharia et al., 2010) ou Petuum (Xing
et al., 2015). Ces frameworks ont permis d’abstraire les aspects réseau et communication lors
du développement d’algorithmes distribués. Ils ont ainsi facilité le déploiement des algorithmes
distribués, mais limité le type d’opérations qui peuvent étre réalisées efficacement, généralement
afin de respecter certaines propriétés algorithmiques. Simultanément, Jordan (2013) a exhorté les
statisticiens de guider les praticiens de I’apprentissage automatique a grande échelle, par 1’étude
des implications de la distribution sur ’estimation, notamment pour mettre en perspective les
gains en temps de calcul avec les pertes potentielles en matiere de précision statistique. Nos
travaux abordent cette question, en proposant plusieurs estimateurs pour U-statistiques dans un
environnement distribué et en comparant leurs variances. Dans ce contexte, nous proposons des
compromis entre temps de calcul et variance.

Cadre probabiliste. Soit deux échantillons indépendants et i.i.d. D,, = {X1,..., X} < X et
Om =1{Z1,...,Zyn} © Z contenant respectivement n € N et m € N éléments, et tels que D,, et
Q,, peuvent avoir des distributions différentes. La U-statistique complete a deux échantillons de
noyau h : X x Z — R associée a ces données s’écrit:

Un( im Z:: ; (X, Z1), (12.6)

avec n = (n,m). En revanche, la version incomplete de U, (h) basée sur B paires s’écrit:

1
Up(h) := % D WXk, Z), (12.7)
(k,1)eDp

ou Dp est un ensemble de B éléments sélectionnés aléatoirement dans l’ensemble de toutes les
paires {(k,0) | (k,1) € {1,...,n} x {1,...,m}}. Pour les données & grande échelle, les ensembles
de données complets D,, et 9,, ne peuvent pas étre stockés sur une seule machine, ce qui rend
le calcul direct de Eq. (12.6) et Eq. (12.7) impossible. Dans ce contexte, ’approche standard
consiste a distribuer les données sur un ensemble de N € N serveurs différents. Pour une moyenne
standard, le simple calcul d’'une moyenne des moyennes locales de chaque serveur donne le méme
estimateur que dans un contexte centralisé. Ce n’est pas aussi simple pour les U-statistiques,
étant donné que sans communication réseau chaque serveur ne peut former des paires qu’avec
I’échantillon local.

Estimateurs distribués pour les U-statistiques. Nous introduisons tout d’abord deux
estimateurs simples dans un contexte distribué qui ne nécessitent pas de communication sur
le réseau: la moyenne U, n de N U-statistiques completes sur chaque échantillon local, et la
moyenne Uy y p de N U-statistiques incompletes formées de B paires choisies aléatoirement dans
chaque échantillon local. En utilisant la deuxieme décomposition de Hoeffding, nous obtenons
une expression analytique pour les variances de ces estimateurs, en suivant les mémes étapes que
Hoeffding (1948) le fait pour Uy. Leur expression montre que les statistiques Un v et Un n,p oOnt
une précision limitée, c’est-a-dire une variance minimale, qui peut étre largement supérieure a
celle de Uy pour un certain h et des distributions spécifiques de X7 et Z.

Repartitionnement des données pour les estimateurs distribués. Cette différence de
variance entre les estimateurs distribués et U, vient du fait que de nombreuses paires impliquées
dans le calcul du second ne sont pas impliquées dans les calculs des premiers. Pour contrebalancer
cet effet, nous proposons de faire la moyenne d’estimateurs calculés entre des procédures de repar-
titionnement des données, qui réattribuent les observations a chacun des groupes aléatoirement,
afin que chaque paire impliquée dans Uy, ait une chance d’étre vue. Nous proposons deux
estimateurs avec repartitionnement des données: Uy n,7 (resp. Un n,p,7) qui fait la moyenne
de T estimateurs Un n (resp. Un n,p) calculé sur la base de T' partitionnements différents des
données. A mesure que T augmente, la variance de ces estimateurs se rapproche de la variance
de Uy par le haut.
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Variance relative de nos estimations. Nous fournissons des expressions analytiques pour
la variance des estimateurs Un, U, Un, N, Un,~N,B; Un,N,7 €t Un n, BT, pour plusieurs fagons de
répartir les données sur les serveurs. A cet égard, nous considérons tout d’abord le tirage sans
remplacement (SWOR), qui est pertinent lorsque l'on divise toutes les données sur plusieurs
machines pour des raisons de contraintes d’espace. Ensuite, nous considérons avec le tirage avec
remplacement (SWR), qui est pertinent lors de la sélection d’ensembles de données sur lesquels
calculer plusieurs estimations en parallele, par exemple lors d’'une descente de gradient sur des
batchs (petits sous-échantillons) de données. Nous supposons pour ces deux types de tirage que
chaque serveur contient n/N éléments de I’échantillon D,, et m/N éléments de Q,,, un réglage
que nous appelons prop. L’assouplissement de cette hypothese implique qu’il y a une probabilité
non nulle de ne pas avoir d’éléments de D,, ou Q,, sur un serveur. Dans ce cas particulier, il
faut fournir une valeur par défaut pour l'estimateur. Cela implique que la variance n’a pas de
forme analytique simple et interprétable, donc nous fournissons des preuves empiriques que les
variances observées sont du méme ordre. De plus, nous caractérisons les parametres h,n, m et les
distributions de X7, Z; pour lesquelles la procédure de répartition est importante.

Apprentissage avec des U-statistiques distribuées. Papa et al. (2015) a étudié la descente
de gradient stochastique pour les U-statistiques. Bien que nous n’étendons pas leur analyse a
nos estimateurs distribués, notre travail considere la minimisation de U-statistiques avec des
méthodes de gradient stochastique dans un environnement distribué, en estimant un gradient
avec Upn, N, B et en repartitionnant les données tous les n, itérations. Nous fournissons des preuves
empiriques que la réduction de n, donne une meilleure solution au processus d’optimisation en
moyenne. En outre, la variance de la perte de la solution finale est beaucoup plus faible, ce qui
montre 'augmentation la robustesse obtenue en repartitionnant les données.

Alors que la section 12.4.1 et cette section rendent compte respectivement de l'aspect de
généralisation et de scalabilité pour 'ordonnancement par similarité, la section suivante se
concentre sur les questions d’optimisation. Ainsi, la section suivante est plus prospective et
donne des stratégies d’optimisation pour le probléeme d’ordonnancement par similarité sur des
exemples-jouets.

12.4.3 Ordonnancement par similarité en pratique

Le développement de la littérature sur 'apprentissage profond de métriques est motivée par un
besoin de critéres qui correspondent aux exigences de l'identification biométrique, et peuvent
étre optimisés par descente de gradient. La plupart de ces criteres sont basés sur une meilleure
séparation des identités avec une heuristique, telle que le fait que toutes les instances associées a
une méme identité doivent correspondre au méme point dans un espace de représentation, voir
la center loss (Wen et al., 2016). Bien que ces critéres soient raisonnables, ils sont mal reliés &
I’évaluation des systémes biométriques, qui est basée sur la courbe ROC. La courbe ROC est
une fonction congue pour évaluer la capacité d’une fonction de score a distinguer les éléments
positifs des négatifs, ou, en biométrie, la capacité d’une fonction de similarité a distinguer les
paires correspondantes des paires non correspondantes. Le lien entre I'ordonnancement bipartite
et la biométrie nous motive a proposer des approches pratiques pour ’apprentissage de fonctions
de similarité qui optimisent une mesure dérivée de la courbe ROC.

Analyses préliminaires de ’ordonnancement par similarité. Considérer I'apprentissage
de similarité comme ’ordonnancement bipartite sur les paires est discuté en profondeur dans
d’autres parties de la these sous le nom d’ordonnancement par similarité. En effet, nous avons
fourni des résultats concernant la généralisation de I'optimisation en un point de la courbe ROC
(pROC), parfois désigné sous le nom de classification de Neyman-Pearson (Scott and Nowak, 2006).
Le probleme pROC consiste a trouver un score s et un seuil ¢, qui donnent le taux de vrais positif
le plus élevé possible tout en satisfaisant une limite supérieure sur le taux de faux positifs. De
plus, nous avons fourni une extension de I’analyse et de la méthodologie associées a I’algorithme
TREERANK a l’apprentissage de fonctions de similarité, pour lesquelles (Clémengon and Vayatis,
2009) avait prouvé initialement qu’il permettait d’apprendre une fonction de score s qui se
rapproche de la courbe ROC optimale en norme sup. Enfin, nous avons motivé théoriquement
P'utilisation de telles méthodes, car nous prouvons que les estimateurs gourmands en calcul
impliqués peuvent étre remplacés par des U-statistiques incompletes, ce qui corrige les limites
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computationnelles associées a ’ordonnancement par similarité.

Limites des analyses précédentes. Nos résultats théoriques justifient d’envisager ’optimisation
du probleme pROC ou l'utilisation de I'algorithme TREERANK. Cependant, elles n’impliquent
pas d’approches évidentes pour optimiser le probleme pROC, ni ne garantissent la performance
empirique de notre extension de l'algorithme TREERANK. Ce chapitre de la these fournit
des illustrations d’approches possibles, dont nous montrons le fonctionnement sur des données
synthétiques simples. L’évaluation empirique approfondie de ces approches est une direction
intéressante pour de futurs travaux.

Résoudre pROC pour des similarités linéaires. Bien que de nombreux articles traitent du
probléeme pROC (Scott and Nowak, 2006; Clémengon and Vayatis, 2010; Rigollet and Tong, 2011),
il subsiste un manque d’approches pratiques pour celui-ci, & I’exception de quelques propositions
basées sur du partitionnement récursif, voir par exemple Scott and Nowak (2006). Soit un
échantillon D,, := {(z;,v:)}~, < X x {1,..., K} de n points de données, ou y; est I'identité d’une
observation, z; € X et X ¢ R?. Dans le cas de 'ordonnancement par similarité, pROC au niveau
a € (0,1) pour une classe de fonctions candidates S, avec s : X x X — R pour tout s € S, s'écrit:

1 1
R Z,H{yi =y;} - s(zi,x;)  avec - Z Wy: # y;} - s(@i, ;) < o (12.8)
i<j i<j

Dans le cas général, Eq. (12.8) peut étre tres difficile & résoudre. Par exemple, si S est composé
d’indicateurs d’ensembles dans X x X, Eq. (12.8) peut ne pas étre différentiable, ni continu.
Cependant, si la famille S a une forme particuliere, la résolution d’Eq. (12.8) peut étre beaucoup
plus facile. Par exemple, nous proposons une solution analytique lorsque S est I’ensemble de
toutes les similarités bilinéaires bornées (z,2') — 2T Az avec A € R et ||A| < 1, o |||z
est la norme de Frobenius. Bien que nous montrions que cette approche donne des solutions
raisonnables pour l'optimisation de la courbe ROC en un point pour des distributions tres
spécifiques, le cas général nécessite des familles de fonctions plus flexibles.

Résoudre pROC par descente de gradient. Pour traiter pROC avec des familles de fonctions
candidates plus complexes, nous proposons une approche basée sur la descente de gradient
pour minimiser un analogue de ’exceés d’erreur pour l’estimation de I’ensemble de volume
minimum de Scott and Nowak (2006), adapté a cet effet pour I'ordonnancement bipartite. Bien
que nous démontrions son efficacité avec un simple classifieur linéaire et un exemple-jouet,
I'approche est suffisamment souple pour s’adapter a des modeles plus complexes, ainsi qu’a une
extension a ’ordonnancement par similarité. Toutefois, ses performances devront étre démontrées
empiriquement sur des exemples plus éloquents. Soit H et G les distributions de X |Y = —1 et
X | Y = +1 respectivement, ainsi que R* la région de rejet optimale pour 'optimisation de la
courbe ROC en point, alors notre relaxation de l'exces d’erreur écrit:

% A -~ 2 9
max (G(RD) = Gw.p) +(Awbh-a)  telaue Juli+#F <1 (129)

ot G et H sont des versions empiriques relaxées de G et H respectivement, et (z) := max(z,0)
pour tout 2 € R. En minimisant la fonction objectif dans Eq. (12.9) et en projetant les poids sur
la balle I'unité, notre méthode retrouve les bonnes régions de rejet par descente de gradient, pour
notre exemple-jouet. Bien que la quantité G(R¥) soit inconnue, nous supposons que les résultats
ne sont pas extrémement sensibles a cette valeur, et que des approximations raisonnables peuvent
étre proposées dans la plupart des applications. Le probléeme pROC est une approche raisonnable
pour apprendre une similarité, mais il n’aborde pas la question de I’ordonnancement comme un
probleme global sur X'. Précisément, il se concentre sur la récupération d’un seul ensemble de
niveau de la fonction de score, comme le démontre le lemme fondamental de Neyman-Pearson,
alors que 'ordonnancement bipartite consiste a récupérer une relation d’ordre entre deux points
quelconques de I'espace d’entrée.

TreeRank pour 1’apprentissage de similarité. L’algorithme TREERANK de Clémencgon and
Vayatis (2009) traite 'ordonnancement bipartite comme un probleme global. Précisément, il
aborde celui-ci par une procédure de séparation récursive, qui résout des problémes de classification
binaire avec des erreurs pondérées asymétriquement entre les observations positives et négatives.
Comme présenté précédemment, nos travaux ont étendu I’algorithme & ’apprentissage de similarité,
ainsi que les garanties en norme sup pour la distance entre la courbe ROC du score appris et
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la courbe ROC optimale. Pour illustrer notre variante de TREERANK pour I’ordonnancement
par similarité, nous représentons visuellement la forme de nos régions candidates symétriques
utilisées pour séparer ’espace.

Considérations pratiques pour TreeRank. Les deux inconvénients de TREERANK sont:
1) sa dépendance aux divisions initiales de ’espace, qui compromettent les performances si la
famille de régions candidates est trop limitée, 2) et son caractére discontinu, qui est incompatible
avec les hypotheses naturelles de nombreux cas pratiques. Une premiere réponse a ces limites
est d’étendre l'idée de foréts aléatoires proposé dans Breiman (2001) & TREERANK, ce qui est
proposé dans Clémengon et al. (2013). Nous montrons sur des données-jouets avec un rapport
de vraisemblance continu dG/dH que les arbres d’ordonnancement moyennés peuvent corriger a
la fois la mauvaise spécification initiale des régions candidates et la nature discrete des arbres
d’ordonnancement. Précisément, la fonction de score moyennée que nous obtenons donne une
courbe ROC presque indiscernable de la courbe ROC optimale, malgré son ensemble de valeurs
limité — mais nombreux — et I'inadéquation de chaque arbre relativement au vrai rapport de
vraisemblance.

Ces propositions esquissent une voie pour de nouveaux algorithmes résolvant I’ordonnancement par
similarité, qui est une approche rationnelle pour traiter le probleme d’identification biométrique.
Cependant, il ne s’agit que d’illustrations sur des problemes tres simples. Trouver de nouvelles
approches pour l'ordonnancement par similarité en pratique, idéalement sur des expériences a
grande échelle qui correspondent a des scénarios pratiques en matiere de biométrie, est une piste
prometteuse pour de futurs travaux.

12.5 Fiabilité en apprentissage automatique

Outre 'apprentissage de similarité, la biométrie et en particulier la reconnaissance faciale incarne
de nombreuses questions importantes en apprentissage automatique, comme le montrent les
rapports du NIST (National Institute of Standards and Technology) sur les évaluations des
entreprises de reconnaissance faciale (Grother and Ngan, 2019). Précisément, la reconnaissance
faciale est confrontée a des questions concernant la robustesse des prédictions, les biais dans les
données d’entrainement, ainsi que sur ’équité algorithmique. Les sous-sections de cette section
abordent toutes ces questions séquentiellement. Bien qu’il existe une littérature abondante
sur ces sujets en général, notre travail porte sur des situations difficiles et peu étudiées qui
s’appliquent directement aux problemes biométriques. Précisément: 1) concernant la robustesse
des prédictions, nous considérons ’apprentissage d’une liste ordonnée d’identités candidates,
comme le font certains problemes d’identification biométrique, 2) pour le biais des données
d’entrainement, nous rééquilibrons les instances d’entrainement en utilisant des informations de
haut niveau, telle que la nationalité dans le cadre du contréle aux frontiéres, 3) pour la question
d’équité, nous nous concentrons sur les fonctions de score en tant que passerelle vers les fonctions
de similarité, comme dans la partie II.

12.5.1 Ordonner les labels par probabilité

Dans les systemes biométriques destinés aux enquétes criminelles, un expert humain considere
souvent les suspects les plus probables proposés par un systeme. En général, les problemes de
classification difficiles se concentrent sur les labels les plus probables, comme le fait par exemple
le challenge ILSVRC (ImageNet Large Scale Visual Recognition Challenge), o Krizhevsky et al.
(2012) et les articles suivants considérent la précision en top-5 & coté de la précision en classification
habituelle (en top-1). Dans notre travail, nous proposons une approche pour la prédiction d’une
liste ordonnée de labels a partir de données de classification. Nous désignons ce probléme par le
nom de label ranking (LR, ordonnancement de labels). Précisément, nous proposons d’utiliser
la fameuse technique One-versus-One (un contre un) pour la classification multiclasse, et nous
dérivons des garanties pour cette approche.

Cadre probabiliste pour ’ordonnancement de labels (LR). Dans le cadre probabiliste
de la classification multiclasse, nous considérons une paire aléatoire (X,Y) € X x ) avec
Y ={1,...,K}, ainsi que le risque L(g) = P{g(X) # Y} associé & un classifieur g : X — Y.
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Le classifieur optimal pour L(g) dans la classe de toutes les fonctions mesurables est le célebre
classifieur de Bayes ¢*, défini comme suit:

g*(z) := argmax n(z),
ke{l,....K}
oung : x— P{Y =k | X = z} est la probabilité a posteriori de la classe k pour tout k € {1, ..., K}.
Nous appelons label ranking (LR) la tache consistant & trouver une liste ordonnée des labels les
plus probables. Cela revient a associer a tout € X une permutation o* € G, telle que:

7](7;1(1) > 770;1(2) > e > 77”;1(}(). (1210)
Nous notons ox la permutation aléatoire associée.

Sur la régression de médiane d’ordonnancements (RMR). Un autre probléme bien
connu dans la littérature statistique concerne la prédiction d’un ordonnancement sur un ensemble
de labels est la régression de médiane d’ordonnancements (RMR, Ranking Median Regression)
(Tsoumakas et al., 2009; Vembu and Gértner, 2010; Clémengon et al., 2018). La RMR considére une
paire (X,XY) € X x Sk et apprend & partir de données une regle d’ordonnancement s : X — Sk
qui minimise le risque:

R(s) == E[d(Z, s(X))], (12.11)

oud: Gk x Gx — R, est une fonction de perte symétrique. La distance d quantifie une distance
entre les ordonnancements. La distance la plus connue est le 7 de Kendall d-, qui est égal au
nombre de désaccords sur les paires entre les deux permutations.

Solution optimale de la RMR. Des travaux antérieurs sur la RMR (Clémengon et al.,
2018) ont montré que le minimiseur optimal de Eq. (12.11) pour des régles d’ordonnancement
mesurables a une formulation analytique simple pour la distance d, sous une hypothése appelée
la Transitivité Stochastique Stricte (SST). La SST suppose que les probabilités sur paires
pri(z) i=P{E(k) < 3() | X =z} =: 1 —p;p(x) pour tout 1 < k < < K satisfont: pour tous
reXet (i,j,k) € {l,...,K}? avec i # j, nous avons p; j(x) # 1/2 et:

pij(x) >1/2 et pir(z)>1/2 = pig(x) > 1/2.
Sous ’hypothese du SST, la regle d’ordonnancement optimal pour d, s’écrit:

sh(k) =1+ Y Ipea(X) < 1/2}. (12.12)
I#k

Le LR en tant que RMR avec information partielle. Si la caractérisation de I’élément
optimal est une extension bienvenue de la théorie de 'apprentissage usuelle (Devroye et al., 1996)
au probleme de RMR, 'ordonnancement sur les labels 3 n’est pas disponible en entier lorsqu’il
s’agit de données de classification. Cependant, nos travaux montrent que si I’on considere la
permutation aléatoire ¥ comme générée par un modele BLTP conditionnel (Korba, 2018) avec
vecteur de préférence n(X) = (m1(X),...,nx (X)), alors il est possible de construire un ¥ qui
satisfasse Y = 371(1) presque stirement. Sur la base de cette observation, nous proposons
de considérer le LR comme un probleéme de RMR avec l'information partielle ¥71(1) sur la
permutation aléatoire complete .

Solutions optimales du LR avec la méthode One-versus-One (OVO). Nous pouvons
calculer les expressions des probabilités sur paires py;(z) sous un modele BTLP conditionnel
avec vecteur de préférence n(z). Précisément, nous avons py ;(z) = ng(z)/(ni(z) + m(z)) pour
tout x € X et k < 1. Remarquons que py ;(x) correspond & la probabilité de prédire k contre [
pour le probléme de classification “One-Versus-One” (OVO, un-contre-un). L’approche OVO a
été étudiée en détail (Hastie and Tibshirani, 1997; Moreira and Mayoraz, 1998; Allwein et al.,
2000; Firnkranz, 2002) pour la résolution de la classification multiclasse & aide d’algorithmes de
classification binaire. L’approche OVO consiste & apprendre K (K — 1)/2 fonctions de décision,
précisément un classifieur pour chaque classe k contre [ avec k < [, et de prendre le vote
majoritaire des K (K — 1)/2 classifieurs. Le classifieur de Bayes pour le probleme OVO (k,1) est
Grprxe 2 Kpi,(z) = 1/2} — 1. Ainsi, Eq. (12.12) se réduit a:

sk(k) =1+ > gk (X) = —1}. (12.13)
l#k
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Notons que s% correspond a o% dans Eq. (12.10), dés que tous les 7 (X) sont distincts. Nous
avons montré qu’une combinaison des solutions optimales de tous les K (K —1)/2 probléemes OVO
implique une régle d’ordonnancement optimale s%. Par conséquent, nous pouvons probablement
dériver une bonne solution du probleme LR & partir de bonnes solutions de tous les problemes

OVO.

Garanties pour le LR avec la méthode OVO. Nous proposons une solution au LR, qui utilise
une combinaison des solutions de tous les problemes empiriques de classification OVO. Ensuite,
nous déduisons des garanties théoriques pour cette solution. Soit un échantillon D,, = {(X;,¥;)}",
de n copies i.i.d. de la paire aléatoire (X,Y"), ainsi que la notation Y ;; = I{Y; = I} — I{Y; = k}
pour tout k < [ et n’importe quel ¢ € {1,...,n}. Le risque empirique f/k,l deg: X — {-1,+1}
pour la classification OVO de k contre [ s’écrit:

~ 1
Liu(g) = —— D Hg(Xi) # Vi),
L R T Y
o ng = Y- I{Y; = k} pour tout k € {1,..., K}. Nous écrivons i le minimiseur de ik’l sur la

classe de proposition fixe G de classifieurs binaires. Sur le modele de Eq. (12.13), une solution
empirique du LR s’écrit:

Sx (k) =1+ > {Geu(X) = —1}.

k#l
Une simple inégalité de Boole implique:
P{Sx # 5%} < ) P{Gra(X) # g (X)) (12.14)
k<l

Eq. (12.14) montre que la somme des probabilités de ne pas prédire la classe optimale pour
chaque probleme d’OVO borne la probabilité de ne pas prévoir 'ordonnancement optimal de
labels en LR. De plus, une conséquence des hypotheses habituelles pour la dérivation de vitesses
de généralisation rapide — présentée pour la premiere fois dans Mammen and Tsybakov (1995)
et aussi détaillée dans Boucheron et al. (2005) — donne une borne supérieure sur la quantité
a droite de Eq. (12.14) par les exces de risque des probleémes de classification k contre . Sous
une hypothese de bruit standard, nous utilisons les vitesses d’apprentissage rapide usuelles en
O(n=Y=9) pour I'exces d’erreur de chaque probleme de classification k contre I, ot a € (0, 1)
est un parametre de bruit. Combinés avec Eq. (12.14), ces résultats impliquent une borne de
convergence en O(n~%(~%)) pour la quantité P{5x # s%}, ce qui est plus lent que la vitesse
d’apprentissage usuelle en classification, en raison de la complexité inhérente dans le probleme
d’ordonnancement des labels.

Implications de ’analyse. Un analogue & I'erreur RMR de 'Eq. (12.11) pour le LR serait le
risque suivant:

R(s) = E[d(s(X), 0%)]. (12.15)
pour une regle d’ordonnancement s : ¥ — Gx. Notons que, pour toute distance d bornée:
d(o,0") <{o # o'} x max d(og,01), (12.16)
00,01ES K

pour tout 0,0’ € Sk. Eq. (12.16) implique une extension de nos garanties pour P{sx # s%}
au risque Eq. (12.15) du minimiseur empirique. Incidemment, notre analyse du LR fournit la
premiere garantie de généralisation a nombre d’instances fini pour ’approche OVO en classification
multiclasse, en considérant le cas spécifique & = 1 pour les garanties sur la précision en top-k que
nous fournissons.

En conclusion, nous avons proposé le nouveau mais naturel probléeme d’ordonnancement de
labels (LR), qui consiste & apprendre la prédiction d’une liste ordonnée des labels les plus
probables & partir de données de classification multiclasse. Bien que Korba et al. (2018) et
Brinker and Hiillermeier (2019) donnent des approches pratiques & la régression de médiane
d’ordonnancements (RMR) avec une information partielle, nos garanties théoriques sont nouvelles.
Notre analyse s’inscrit parfaitement dans le cadre usuel de minimisation du risque empirique
et exploite des résultats récents sur la RMR. Un sous-produit de notre analyse est la premiere
borne de généralisation a échantillon fini sur 'approche OVO pour la classification multiclasse.
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12.5.2 Correction des biais de sélection

Dans certains problémes d’apprentissage statistique, la distribution P’ des données d’entrainement

1,..., 2! peut étre différente de celle des données de test P. Cette configuration constitue un
cas particulier d’apprentissage par transfert (Pan and Yang, 2010; Ben-David et al., 2010; Storkey,
2009; Redko et al., 2019). Notamment dans les problémes de reconnaissance faciale, la population
utilisée pour Ientralnement n’est souvent pas représentative de la population test, comme souligné
dans Wang et al. (2019). Des informations auxiliaires sous forme de caractéristiques de haut
niveau sont cependant souvent disponibles, comme la nationalité associée a un portrait en
reconnaissance faciale. Notre travail porte sur 'apprentissage avec des données biaisées du
point de vue de la minimisation du risque empirique (ERM). A cet égard, nous proposons une
approche basée sur I’échantillonnage préférentiel qui traite: 1) de problemes de classification
ol les probabilités de chaque classe different entre les phases d’entrainement et de test, 2) de
situations ou les données proviennent de populations stratifiées représentées différemment entre
Pentrainement et le test, 3) de Papprentissage PU, qui consiste a apprendre avec un échantillon
de données positives et non labellisées (du Plessis et al., 2014), 4) et de 'apprentissage avec des
données censurées (Fleming and Harrington, 2011). Notre analyse est soutenue par des résultats
empiriques solides pour la classification sur la base de données ImageNet (Russakovsky et al.,
2014), pour laquelle nous avons créé une information de strate a partir de concepts de plus haut
niveau que les classes prédites.

Minimisation du risque empirique pondéré (WERM). Le but des algorithmes d’apprentis-
sage est généralement de trouver un parametre 6 € ©, qui minimise l'espérance de risque
R(0) = Ep[(0,Z)] sur les données de test, avec £ : © x Z — R, une fonction de perte
mesurable. Pour approximer R(#), nous proposons un estimateur pondéré ﬁw,n sur les données
d’entrainement:

~ 1 &
Ruwn(d) := — i 0(0,72)),
n(0) n;:lw (0.2)
ot w = (wy,...,w,) est un vecteur de poids. Lorsque P’ = P et w = (1,...,1), alors ﬁwmw)

est le risque empirique usuel, ainsi qu'un estimateur non biaisé de I'espérance du risque R(6)
sur les données de test. Lorsque P’ # P et P est absolument continu par rapport & P/,
la méthode d’échantillonnage préférentiel (Wasserman, 2010, Section 25.3) suggere de fixer
w; = ®(Z;) =: w¥ pour tout i € {1,...,n}, ot B(2) := (dP/dP’')(z) pour tout z € Z. ¥ est le
rapport de vraisemblance entre P’ et P, donc ﬁw,n est alors un estimateur non biaisé de R.

Garanties de généralisation pour WERM. Nous dérivons ensuite des garanties de générali-
sation habituelles en O(n~1/2) qui dépendent de la norme sup ||®||,, du rapport de vraisemblance
sur I’espace d’entrée Z. Nos garanties montrent que la généralisation est meilleure lorsque les
deux distributions P’ et P sont similaires. Dans le cas général, le rapport de vraisemblance
® est inconnu, ce qui limite I’applicabilité de cette technique. De plus, ® est une fonction sur
lespace d’entrée Z, ce qui rend son estimation peu pratique. Notre travail présente des situations
pour lesquelles la fonction de vraisemblance @ a une formulation simple, sous I’hypothese qu’une
information auxiliaire sur une relation entre les distributions P’ et P est disponible.

WERM pour les probabilités de strates. Dans le contexte de la classification multiclasse,
c’est-a-dire quand Z = (X,Y) e X x Y avec Y = {1,..., K} et K € N est le nombre de classes, ®
a une forme simple lorsque la proportion en espérance p = Pz.p{Y = k} de chaque classe k dans
I’ensemble de données du test est connu. Dans ce contexte, les poids optimaux w* = (wf, ..., w¥)
satisfont w = py,/py. pour tout i € {1,...,n}, ou p, = Pp{Y = k} est la proportion en
espérance de la classe k dans les données d’entrainement pour tout k € {1,..., K}. Notons que
les pj, peuvent étre estimés & partir des données d’entrainement. Cependant cette stratégie de
repondération ne dépend pas du fait que la prédiction des classes soit ’objectif, mais s’applique
des 'on connait: les proportions de chaque strate pour une stratification quelconque sur la
distribution test, et la strate associée a chaque instance de ’ensemble d’entrainement.

WERM pour ’apprentissage avec des données positives et non labellisées (PU).
L’apprentissage avec des données positives et non labellisées (PU) a fait 'objet d’une attention
croissante dans la récente littérature en apprentissage statistique (du Plessis and Sugiyama, 2014;
du Plessis et al., 2014, 2015; Kiryo et al., 2017; Bekker et al., 2019). L’apprentissage PU considére
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un probleéme de classification binaire, ¢’est-a-dire Z = (X,Y) € X x {—1,+1}, et apprend un
classifieur avec un échantillon de positifs et d’instances non labellisées. L’échantillon non labellisé
est un mélange de données négatives et positives dans des proportions fixes. Notre travail montre
que, en repondérant les instances de ces deux échantillons, nous obtenons un estimateur non
biaisé du risque R. Nous fournissons des garanties statistiques pour le minimiseur de notre risque
estimé.

Expériences sur la base de données ImageNet. Finalement, nous fournissons une illustra-
tion numérique convaincante de l'efficacité de WERM sur la base de données ImageNet, une base
utilisée pour évaluer les algorithmes de classification a grande échelle en vision par ordinateur
(Russakovsky et al., 2014). Les classes d'TmageNet sont construites & partir de la base de données
lexicale WordNet pour l'anglais (Fellbaum, 1998). En tant que telles, ces classes peuvent étre
regroupées en plusieurs concepts de haut niveau, qui constituent les strates de notre expérience
de classification pondérée. Par exemple, la classe ”flamant rose” est une sous-classe de la strate
7oiseau”. L’utilisation d’informations de haut niveau pour re-pondérer les données d’entrainement
améliore considérablement les performances sur les données de test, mesuré en termes de précision
en classification au top-1 et au top-5.

Bien qu’assurer la représentativité d’une base de données puisse aider & obtenir des prédictions
satisfaisant des criteres d’équité, il y a un intérét croissant pour des mécanismes qui corrigent
explicitement les biais inhérents aux données d’entrainement.

12.5.3 Equité dans P’apprentissage de fonctions de scoring

L’apprentissage d’un classifieur sous des contraintes d’équité a recu beaucoup d’attention dans
la littérature (Dwork et al., 2012; Zafar et al., 2017a; Donini et al., 2018; Barocas et al., 2019;
Williamson and Menon, 2019; McNamara et al., 2019). Toutefois, les approches proposées pour
assurer une équité en ordonnancement soit corrigent seulement la fonction de score avec une
étape de post-traitement (Borkan et al., 2019; Beutel et al., 2019; Zehlike et al., 2017; Celis et al.,
2018), soit s’attaquent & des notions originales d’équité, comme une équité d’exposition dans la
présentation séquentielle d’ordonnancements (Singh and Joachims, 2018, 2019). De nombreux
articles sur ’équité pour I'ordonnancement ont proposé différentes contraintes basées sur 'aire
sous la courbe ROC (AUC), une mesure standard de la performance en ordonnancement. Notre
travail propose tout d’abord: un cadre unifié pour des contraintes d’équité basées sur ’AUC, des
garanties de généralisation pour la minimisation d’une perte qui inteégre n’importe laquelle de ces
contraintes, ainsi qu’une procédure pratique d’optimisation de cette perte basée sur la descente
de gradient. Ensuite, nous montrons les limites des contraintes d’équité basées sur 'AUC, et
proposons des contraintes plus fortes basées sur la courbe ROC. Pour finir, nous prouvons
des garanties de généralisation, ainsi qu'une extension de notre procédure d’optimisation pour
I’apprentissage avec un critere d’équité a nos nouvelles contraintes basées sur la ROC.

Cadre probabiliste pour I’équité en ordonnancement bipartite. Le cadre standard
d’équité pour la classification binaire considere un triplet de variables aléatoires (X,Y,Z) €
X x {—1,1} x {0,1}, ot X est la variable aléatoire d’entrée, Y est la variable aléatoire binaire de
sortie, et Z encode 'appartenance a un groupe protégé. Dans 'ordonnancement bipartite, nous
apprenons une fonction de score s : X — R et nous ’évaluons par rapport & la maniére dont
elle projette les négatifs Y = —1 relativement aux positifs Y = +1 sur la droite réelle. Dans le
contexte de ’équité, I'influence de Z sur la distribution des scores est important. Pour cela, nous
introduisons les distributions conditionnelles suivantes d’un score s donné pour tout z € {0, 1}:

Hy(t) :=P{s(X)<t|Y =—-1} e  HPt):=P{s(X)<t|Y =-1,Z =2z},
Go(t) =P{s(X)<t|Y =41} et GEOU):=P{s(X)<t|Y =+1,Z=2z}.

Bien que la courbe ROC sert usuellement a évaluer la performance en ordonnancement d’une
fonction de score, c’est aussi un outil général pour évaluer les différences entre deux fonctions
de répartition h et g sur R. Dans ce contexte, la courbe ROC est connue sous le nom de
courbe probability-probability (PP plot) de h et g. L’aire sous la courbe ROC (AUC) est un
résumé scalaire de la courbe ROC, et est omniprésent dans la littérature sur I’ordonnancement.
I’AUC sert généralement a évaluer les performances des algorithmes d’ordonnancement bipartite
(Clémengon et al., 2008). Formellement, les ROC et AUC entre les deux fonctions de répartitions
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h et g, s’écrivent:
1
ROC),:ae[0,1]—>1-goh (1 -a) et AUC 4 := J ROC}, 4(0) da.
0

Des différences dans la répartition des positifs (ou des négatifs) entre les groupes protégés entraine
des écarts dans les taux d’erreur de ces groupes, observés pour la reconnaissance faciale dans
Grother and Ngan (2019).

Critére unifié d’équité basé sur ’AUC. Pour corriger les écarts de taux d’erreur entre les
groupes protégés, de nombreux auteurs — principalement issus de la communauté des systemes
de recommandation — ont proposé des contraintes d’équité basées sur TAUC (Beutel et al.,
2019; Borkan et al., 2019; Kallus and Zhou, 2019). Avec D(s) := (H§O),H§1),Ggo),Ggl))T, ces
contraintes s’écrivent:

AUC,7p(s),87D(s) = AUCLT D(s),87 D(s)> (12.17)

pour différentes valeurs de (o, 3,a/,) € (P)*, o P = {v | v e R},1Tv = 1} désigne le 4-
simplexe. Nos travaux montrent que: si la contrainte d’équité Eq. (12.17) est satisfaite lorsque
la distribution X|Y = y,Z = z ne dépend pas de z € {0,1} pour a la fois y = —1 et y = +1,
alors Eq. (12.17) s’écrit comme la combinaison linéaire I'"C(s) = 0 de cinq contraintes d’équité
élémentaires C(s) = (C1(s),...,C5(s)) avec I' € R®. Notre définition générale des contraintes
d’équité basées sur ’AUC englobe toutes les mesures d’équité basées sur ’AUC proposées, et
peut servir a en dériver de nouvelles. Plus important encore, elle ouvre la voie a des approches
flexibles pour 'apprentissage de score sous une contrainte d’équité basée sur I’AUC.

Apprentissage sous contraintes d’équité basée sur I’AUC. Nous intégrons la contrainte
d’équité basée sur ’AUC dans une pénalisation ajoutée a la fonction objectif, que nous maximisons:

max AUCy, ¢, — ALTC(s)], (12.18)
SE.

sur une famille de fonction de score S. Le parametre A régle un compromis entre la précision en
ordonnancement et le critére d’équité. Nous fournissons des garanties théoriques sur ’erreur de
généralisation de notre critére Eq. (12.18), prouvées avec des inégalités de concentration sur les
déviations des U-statistiques. Nous proposons un algorithme basé sur la descente de gradient
qui optimise simplement une version relaxée d’ Eq. (12.18). Avec la notation ~ pour indiquer la
relaxation d’une estimation empirique de ’AUC par la fonction logistique o : z — 1/(1 + e %),
notre relaxation de la perte avec une contrainte particuliere basée sur ’AUC s’écrit:

Z)\(s) = m}Hs7G5 —)\~c(m mHél)’Gg1)) , (12.19)

HO GO T
ol ¢ € [—1,1] est un paramétre qui change au cours du processus d’apprentissage. Le parameétre
c est modifié apres un nombre fixé de nyqapt itérations de 'algorithme du gradient, selon que la
différence dans la contrainte d’AUC de 'Eq. (12.19) est évaluée comme positive ou négative sur
un ensemble de données de validation.

Limites des contraintes basées sur I’AUC. L’égalité entre deux AUC contraint les distribu-
tions concernées. Plus précisément, le théoreme des accroissements finis montre qu’elle impose un
point d’égalité pour les courbes ROC concernées. Cependant, ce point est inconnu a priori. De
nombreuses applications — et en particulier la biométrie — se concentrent sur les performances
du systeme pour de petits taux de faux positifs, c’est-a-dire des régions spécifiques de la courbe
ROC. Imposer I'égalité des courbes ROC dans ces régions implique que des classifieurs obtenus
par le seuillage du score satisfont un critere d’équité dans un contexte de classification. Pour
faire en sorte que les courbes ROC soient égales dans une région spécifique, nous pouvons nous
concentrer sur quelques points précis, comme usuellement en approximation numérique. Pour ces
raisons, nous introduisons des contraintes basées sur les courbes ROC, qui imposent 1’égalité de
deux courbes ROC a des points précis.

Apprentissage sous contrainte d’équité basée sur la ROC. Considérons les courbes ROC

entre les négatifs et positifs de chaque groupe sensible, c¢’est-a-dire ROC g g et ROC GO G

leur écart par rapport a la diagonale s’écrit:

AF,a(S) = ROCFﬁo),Fﬁl) (Oz) -,
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Figure 12.2: Courbes ROC obtenues respectivement: en apprenant un score sans contrainte, avec
une contrainte basée sur ’AUC, et avec une contrainte basée sur la ROC. Nous avons choisi les
parametres de la contrainte basée sur la ROC dans le but d’obtenir ROC ) ) (@) = a pour

tout € [0,1/4] et F € {H,G}.

pour F' € {H,G}. Au lieu de contraintes d’équité basées sur les AUC, nous imposons Ap 4 (s) =0
avec des valeurs spécifiques ap = [oz%l), ... ,a%mF)] de « pour tout F € {H, G}. Pour cela, nous

introduisons une perte L qui intégre ces contraintes avec des coefficients Ap = [)\g), e )\%mF )]

pour F' e {H,G}, qui s’écrit:

i

my mag
La(s) := AUCH, 6, — > A?\AH@%)(S)\ _— )\gf)’AG’ag)(s)
k=1 k=1

ou A := (o, A\g, Ag). Nous étendons nos garanties de généralisation aux contraintes d’équité
basées sur la courbe ROC, a 'aide de bornes uniformes sur les courbes ROC. Pour prouver
ce résultat, nous considérons un processus empirique indexé par la famille de points « € [0, 1].
Nous proposons également une stratégie d’optimisation analogue a celle utilisée pour Eq. (12.19).
Notre stratégie comporte des parametres de seuil, qui sont modifiés d’'une maniere similaire a c.

Résultats expérimentaux. Nous fournissons des preuves empiriques solides de la pertinence
notre approche. Précisément, nous présentons dans la figure 12.2 les compromis entre équité et
précision obtenus avec nos méthodes.

En conclusion, nous avons proposé de nouvelles approches pour aborder la question de I’équité
algorithmique pour des problemes d’ordonnancement. Tout d’abord, nous avons regroupé les
contraintes basées sur ’AUC sous une seule définition générale. Ensuite, nous avons proposé des
garanties théoriques, et une méthode pratique pour apprendre avec n’importe laquelle de ces
contraintes a l'aide d’une descente de gradient. Nous avons souligné les limites des contraintes
basées sur ’AUC, et avons proposé une approche basée sur la ROC qui correspond mieux aux
conditions opérationnelles. Finalement, nous avons étendu nos garanties de généralisation et
notre méthode pratique d’optimisation & notre nouvelle contrainte plus restrictive et plus flexible
basée sur la courbe ROC.

12.6 Perspectives

En conclusion, la these aborde des problemes importants en biométrie du point de vue de
la théorie de 'apprentissage statistique. Notre travail propose des idées originales pour ces
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problemes, et soutient ces idées avec des résultats théoriques. Ces résultats peuvent étre
interprétés comme des garanties de sécurité qui sont vraies sous des hypotheses probabilistes.
Notre travail est une réponse indispensable a I’augmentation rapide du volume de littérature
expérimentale en apprentissage automatique que les chercheurs en biométrie doivent suivre.
L’identification biométrique, et la reconnaissance faciale en particulier, incarnent simultanément
de nombreux sujets en apprentissage automatique, comme ’apprentissage par paires, les biais
d’échantillonnage ou 'ordonnancement. Pour cette raison, nous avons envisagé des versions
stylisées de ces problemes, car leur examen simultané obscurcirait notre discours, et court le
risque d’étre considéré comme anecdotique par la communauté de 'apprentissage automatique.
La richesse des sujets abordés par la these résulte de cet impératif. L’élargissement de ce spectre
pourrait étre envisagé, par exemple en considérant I’extension des criteres d’ordonnancement des
meilleurs (Menon and Williamson, 2016, Section 9) au probléme d’ordonnancement par similarité
présenté ci-dessus.

Du point de vue de la biométrie, la perspective la plus importante pour cette these est de
réaliser I'impact potentiel des méthodes présentées, en fournissant des preuves empiriques solides
de leur pertinence dans des contextes pratiques. En effet, si 'adoption rapide des techniques
d’apprentissage automatique par les entreprises privées ont stimulé la croissance du domaine,
elle a également dirigé ’essentiel de 'attention sur les articles qui proposent des solutions sans
équivoque a des problemes industriels spécifiques. Un exemple notoire en reconnaissance faciale
est Schroff et al. (2015). Dans ce contexte, la promotion de nos travaux nécessitera de trouver et
de présenter pédagogiquement des expériences a grande échelle qui traitent de cas d’utilisation
pratiques précis, ce qui est une orientation prometteuse pour les travaux futurs.

Enfin, nous pourrions étendre les différents sujets abordés dans la these. Dans le contexte de
I’équité pour 'ordonnancement, une limite de notre analyse provient de I’absence d’une expression
analytique pour la meilleure fonction de score sous une condition d’équité. Toutefois, elle est
fournie dans le cas de I’équité pour la régression par Chzhen et al. (2020) par exemple. Pour
I'ordonnancement bipartite, le fait de surmonter cet obstacle ouvre la voie a une extension des
algorithmes de Clémengon and Vayatis (2009) — basés sur le partionnement de 'espace d’entrée
— a ’apprentissage avec des contraintes d’équité. Une autre possibilité concerne I'extension des
techniques présentées ici au cas de 'ordonnancement par similarité. En effet, cette extension
donne un cadre qui correspond tres étroitement aux considérations opérationnelles en matiere
de biométrie, et serait justifiée par l'intérét actuel pour la correction explicite des biais en
reconnaissance faciale. Le volet expérimental de ces travaux serait soutenu par la disponibilité de
bases de données de visage adaptées (Wang et al., 2019). Une autre possibilité consiste & adresser
les limites de nos travaux sur la minimisation des risques empiriques pondérés, en considérant les
cas ou la nature de la différence entre les données d’entrainement et de test n’est pas couverte
par nos travaux. Par exemple, dans Sugiyama et al. (2007), les auteurs proposent d’estimer le
rapport de vraisemblance a l’aide d’un petit échantillon qui suit la distribution de test comme
information auxiliaire. Outre les exemples ci-dessus, d’autres extensions de chaque sujet abordé
dans la these pourraient étre envisagées.

En conclusion, la richesse des questions qui se posent en biométrie est un terrain fertile pour
le développement a la fois de la théorie et de la pratique en apprentissage automatique. Cette
richesse a engendré cette these et peut inspirer de futures recherches.



Bibliography

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,
J. Dean, M. Devin, S. Ghemawat, 1. J. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia,
R. Jézefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. G.
Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. A. Tucker,
V. Vanhoucke, V. Vasudevan, F. B. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke,
Y. Yu, and X. Zheng. Tensorflow: Large-scale machine learning on heterogeneous distributed
systems. CoRR, abs/1603.04467, 2016.

A. Agarwal, A. Beygelzimer, M. Dudik, J. Langford, and H. M. Wallach. A reductions approach
to fair classification. In Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pages 60—69. PMLR, 2018.

S. Agarwal, T. Graepel, R. Herbrich, S. Har-Peled, and D. Roth. Generalization bounds for the
area under the ROC curve. Journal of Machine Learning Research, 6:393-425, 2005.

E. L. Allwein, R. E. Schapire, and Y. Singer. Reducing multiclass to binary: A unifying approach
for margin classifiers. Journal of Machine Learning Research, 1:113-141, 2000.

P. K. Andersen, O. Borgan, R. D. Gill, and N. Keiding. Statistical models based on counting
processes. Springer Science & Business Media, 2012.

M. A. Arcones and E. Giné. U-processes indexed by Vapnik-Cervonenkis classes of functions
with applications to asymptotics and bootstrap of U-statistics with estimated parameters.
Stochastic Processes and their Applications, 52(1):17 — 38, 1994.

Y. Arjevani and O. Shamir. Communication complexity of distributed convex learning and
optimization. In Advances in Neural Information Processing Systems 28: Annual Conference
on Neural Information Processing Systems 2015, pages 1756-1764, 2015.

G. Ausset, S. Clémengon, and F. Portier. Empirical risk minimization under random censorship:
Theory and practice. CoRR, abs/1906.01908, 2019.

F. R. Bach, D. Heckerman, and E. Horvitz. Considering cost asymmetry in learning classifiers.
Journal of Machine Learning Research, 7:1713-1741, 2006.

M. Balcan, A. Blum, S. Fine, and Y. Mansour. Distributed learning, communication complexity
and privacy. In COLT 2012 - The 25th Annual Conference on Learning Theory, volume 23 of
JMLR Proceedings, pages 26.1-26.22, 2012.

S. Barocas, M. Hardt, and A. Narayanan. Fairness and Machine Learning. fairmlbook.org, 2019.

G. D. Battista, P. Eades, R. Tamassia, and 1. G. Tollis. Graph Drawing: Algorithms for the
Visualization of Graphs. Prentice Hall PTR, 1998.

Y. Bechavod and K. Ligett. Learning fair classifiers: A regularization-inspired approach. CoRR,
abs/1707.00044, 2017.

J. Bekker, P. Robberechts, and J. Davis. Beyond the selected completely at random assumption
for learning from positive and unlabeled data. In Machine Learning and Knowledge Discovery
in Databases - European Conference, ECML PKDD 2019, volume 11907 of Lecture Notes in
Computer Science, pages 71-85. Springer, 2019.

227



Bibliography 228

R. Bekkerman, M. Bilenko, and J. Langford. Scaling up Machine Learning: Parallel and
Distributed Approaches. Cambridge University Press, 2011.

A. Bellet and A. Habrard. Robustness and generalization for metric learning. Neurocomputing,
151:259-267, 2015.

A. Bellet, A. Habrard, and M. Sebban. Metric Learning. Morgan & Claypool Publishers, 2015a.

A. Bellet, Y. Liang, A. B. Garakani, M. Balcan, and F. Sha. A distributed frank-wolfe algorithm
for communication-efficient sparse learning. In Proceedings of the 2015 SIAM International
Conference on Data Mining, pages 478-486. STAM, 2015b.

S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. W. Vaughan. A theory of
learning from different domains. Machine Learning, 79(1-2):151-175, 2010.

A. Bendale and T. E. Boult. Towards open world recognition. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2015, pages 1893-1902. IEEE Computer Society, 2015.

P. Bertail and J. Tressou. Incomplete generalized U-statistics for food risk assessment. Biometrics,
62(1):66-74, 2006.

P. Bertail, S. Clémencon, and N. Vayatis. On bootstrapping the ROC curve. In Advances in Neural
Information Processing Systems 21, Proceedings of the Twenty-Second Annual Conference on
Neural Information Processing Systems, pages 137—144. Curran Associates, Inc., 2008.

A. Beutel, J. Chen, T. Doshi, H. Qian, L. Wei, Y. Wu, L. Heldt, Z. Zhao, L.. Hong, E. H. Chi,
and C. Goodrow. Fairness in recommendation ranking through pairwise comparisons. In
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, KDD 2019, pages 2212-2220. ACM, 2019.

A. J. Biega, K. P. Gummadi, and G. Weikum. Equity of attention: Amortizing individual fairness
in rankings. In The 41st International ACM SIGIR Conference on Research € Development
in Information Retrieval, SIGIR 2018, pages 405-414. ACM, 2018.

G. Blom. Some properties of incomplete U-statistics. Biometrika, 63(3):573-580, 1976.

J. Bohné, Y. Ying, S. Gentric, and M. Pontil. Large margin local metric learning. In Computer
Vision - ECCV 201/ - 13th European Conference, Proceedings, Part II, volume 8690 of Lecture
Notes in Computer Science, pages 679-694. Springer, 2014.

T. Bolukbasi, K. Chang, J. Y. Zou, V. Saligrama, and A. T. Kalai. Man is to computer
programmer as woman is to homemaker? debiasing word embeddings. In Advances in Neural
Information Processing Systems 29: Annual Conference on Neural Information Processing
Systems 2016, pages 4349-4357, 2016.

D. Borkan, L. Dixon, J. Sorensen, N. Thain, and L. Vasserman. Nuanced metrics for measuring
unintended bias with real data for text classification. In Companion of The 2019 World Wide
Web Conference, WWW 2019, pages 491-500. ACM, 2019.

L. Bottou and O. Bousquet. The tradeoffs of large scale learning. In Advances in Neural
Information Processing Systems 20, Proceedings of the Twenty-First Annual Conference on
Neural Information Processing Systems, pages 161-168, 2007.

S. Boucheron, O. Bousquet, and G. Lugosi. Theory of classification : a survey of some recent
advances. ESAIM: Probability and Statistics, 9:323-375, 2005.

S. Boucheron, G. Lugosi, and P. Massart. Concentration Inequalities - A Nonasymptotic Theory
of Independence. Oxford University Press, 2013.

O. Bousquet, S. Boucheron, and G. Lugosi. Introduction to statistical learning theory. In
Advanced Lectures on Machine Learning, ML Summer Schools 2003, volume 3176 of Lecture
Notes in Computer Science, pages 169-207. Springer, 2003.



229 Bibliography

S. P. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and
statistical learning via the alternating direction method of multipliers. Foundations and Trends
in Machine Learning, 3(1):1-122, 2011.

S. P. Boyd, C. Cortes, M. Mohri, and A. Radovanovic. Accuracy at the top. In Advances in
Neural Information Processing Systems 25: 26th Annual Conference on Neural Information
Processing Systems 2012, pages 962-970, 2012.

R. A. Bradley and M. E. Terry. Rank analysis of incomplete block designs: I. the method of
paired comparisons. Biometrika, 39(3/4):324-345, 1952.

L. Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.

L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression Trees.
Wadsworth, 1984.

K. Brinker and E. Hiillermeier. A reduction of label ranking to multiclass classification. In
Machine Learning and Knowledge Discovery in Databases - FEuropean Conference, FCML
PKDD 2019, Proceedings, Part III, volume 11908 of Lecture Notes in Computer Science, pages
204-219. Springer, 2019.

S. Bubeck. Convex optimization: Algorithms and complexity. Foundations and Trends in Machine
Learning, 8(3-4):231-357, 2015.

J. Bucklew. Introduction to Rare Event Simulation. Springer, 2010.

C. J. C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G. N. Hullender.
Learning to rank using gradient descent. In Proceedings of the Twenty-Second International
Conference on Machine Learning (ICML 2005), volume 119 of ACM International Conference
Proceeding Series, pages 89-96. ACM, 2005.

Q. Cao, Z. Guo, and Y. Ying. Generalization bounds for metric and similarity learning. Machine
Learning, 102(1):115-132, 2016.

P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and K. Tzoumas. Apache flink™:
Stream and batch processing in a single engine. IEEE Data Engineering Bulletin, 38(4):28-38,
2015.

L. E. Celis, D. Straszak, and N. K. Vishnoi. Ranking with fairness constraints. In 45th
International Colloguium on Automata, Languages, and Programming, ICALP 2018, volume
107 of LIPIcs, pages 28:1-28:15. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2018.

G. Chechik, V. Sharma, U. Shalit, and S. Bengio. Large scale online learning of image similarity
through ranking. Journal of Machine Learning Research, 11:1109-1135, 2010.

J. Chen. Fair lending needs explainable models for responsible recommendation. CoRR,
abs/1809.04684, 2018.

Z. Chen, B. Liu, R. Brachman, P. Stone, and F. Rossi. Lifelong Machine Learning. Morgan &
Claypool Publishers, 2018.

F. Chollet et al. Keras, 2015.

E. Chzhen, C. Denis, M. Hebiri, L. Oneto, and M. Pontil. Fair Regression via Plug-in Estimator
and Recalibration With Statistical Guarantees. HAL, archives ouvertes, Mar. 2020.

S. Clémencon and N. Vayatis. Tree-based ranking methods. IEEE Transactions on Information
Theory, 55(9):4316-4336, 2009.

S. Clémencon and N. Vayatis. The RankOver algorithm: overlaid classification rules for optimal
ranking. Constructive Approximation, 32:619-648, 2010.

S. Clémencon, G. Lugosi, and N. Vayatis. Ranking and empirical risk minimization of U-statistics.
The Annals of Statistics, 36(2):844-874, 2008.



Bibliography 230

S. Clémencon, M. Depecker, and N. Vayatis. Adaptive partitioning schemes for bipartite ranking.
Machine Learning, 83(1):31-69, 2011.

S. Clémencon, I. Colin, and A. Bellet. Scaling-up Empirical Risk Minimization: Optimization of
Incomplete U-statistics. Journal of Machine Learning Research, 17(76):1-36, 2016.

S. Clémengon. A statistical view of clustering performance through the theory of U-processes.
Journal of Multivariate Analysis, 124:42-56, 2014.

S. Clémencon and J. Jakubowicz. Scoring anomalies: a m-estimation formulation. In Proceedings
of the Sixteenth International Conference on Artificial Intelligence and Statistics, AISTATS
2013, volume 31 of JMLR Workshop and Conference Proceedings, pages 659-667, 2013.

S. Clémengon and S. Robbiano. Building confidence regions for the ROC surface. Pattern
Recognitition Letters, 46:67-74, 2014.

S. Clémencon and N. Vayatis. Ranking the best instances. Journal of Machine Learning Research,
8:2671-2699, 2007.

S. Clémencgon and N. Vayatis. Empirical performance maximization for linear rank statistics. In
Advances in Neural Information Processing Systems 21, Proceedings of the Twenty-Second An-
nual Conference on Neural Information Processing Systems, pages 305-312. Curran Associates,

Inc., 2008.

S. Clémencon and N. Vayatis. Tree-Based Ranking Methods. IEEE Transactions on Information
Theory, 5(9):4136-4156, 2009.

S. Clémencon and N. Vayatis. Nonparametric estimation of the precision-recall curve. In
Proceedings of the 26th Annual International Conference on Machine Learning, ICML 2009,
volume 382 of ACM International Conference Proceeding Series, pages 185-192. ACM, 2009.

S. Clémencon and N. Vayatis. Overlaying classifiers: a practical approach for optimal ranking.
In Constructive Approximation, number 32, pages 313-320, 2010.

S. Clémengon, G. Lugosi, and N. Vayatis. Ranking and Empirical Minimization of U-Statistics.
The Annals of Statistics, 36(2):844-874, 2008.

S. Clémengon, N. Vayatis, and M. Depecker. AUC optimization and the two-sample problem. In
Advances in Neural Information Processing Systems 22: 23rd Annual Conference on Neural
Information Processing Systems 2009, pages 360-368. Curran Associates, Inc., 2009.

S. Clémencon, M. Depecker, and N. Vayatis. Ranking forests. Journal of Machine Learning
Research, 14(1):39-73, 2013.

S. Clémengon, A. Korba, and E. Sibony. Ranking median regression: Learning to order through
local consensus. In Algorithmic Learning Theory, ALT 2018, volume 83 of Proceedings of
Machine Learning Research, pages 212-245. PMLR, 2018.

S. Clémencon and A. Thomas. Mass volume curves and anomaly ranking. FElectronic Journal of
Statistics, 12(2):2806-2872, 2018.

A. H. Copeland. A reasonable social welfare function. In Seminar on applications of mathematics
to social sciences, University of Michigan, 1951.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms, Third
Edition. The MIT Press, 3rd edition, 2009.

C. Cortes, M. Mohri, M. Riley, and A. Rostamizadeh. Sample selection bias correction theory. In
Algorithmic Learning Theory, 19th International Conference, ALT 2008. Proceedings, volume
5254 of Lecture Notes in Computer Science, pages 38-53. Springer, 2008.

C. Cortes, Y. Mansour, and M. Mohri. Learning bounds for importance weighting. In Advances
in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information
Processing Systems 2010, pages 442-450. Curran Associates, Inc., 2010.



231 Bibliography

F. Cucker and S. Smale. Best choices for regularization parameters in learning theory: On the
bias-variance problem. Foundations of Computational Mathematics, 2:413-428, 01 2002.

A. Das, A. Dantcheva, and F. Brémond. Mitigating bias in gender, age and ethnicity classifica-
tion: A multi-task convolution neural network approach. In Computer Vision - ECCV 2018
Workshops - Proceedings, Part I, volume 11129 of Lecture Notes in Computer Science, pages
573-585. Springer, 2018.

P. Davis. Interpolation and approzimation. Dover Publications, 1975.
V. de la Pena and E. Giné. Decoupling: from Dependence to Independence. Springer, 1999.

J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters. Communica-
tions of the ACM, 51(1):107-113, 2008.

J. Deng, J. Guo, N. Xue, and S. Zafeiriou. Arcface: Additive angular margin loss for deep face
recognition. In TEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019,
pages 4690-4699. Computer Vision Foundation / IEEE, 2019.

R. Deo. Machine learning in medicine. Circulation, 2015.

L. Devroye, L. Gyorfi, and G. Lugosi. A probabilistic theory of pattern recognition. Springer,
1996.

M. Deza and T. Huang. Metrics on permutations, a survey. 23, 1998.

J.-P. Doignon, A. Peke¢, and M. Regenwetter. The repeated insertion model for rankings: Missing
link between two subset choice models. Psychometrika, 69:33-54, 03 2004.

P. Domingos. A few useful things to know about machine learning. Communications of the ACM,
55(10):78-87, 2012.

M. Donini, L. Oneto, S. Ben-David, J. Shawe-Taylor, and M. Pontil. Empirical risk minimization
under fairness constraints. In Advances in Neural Information Processing Systems 31: Annual
Conference on Neural Information Processing Systems 2018, NeurIPS 2018, pages 2796-2806,
2018.

M. C. du Plessis and M. Sugiyama. Class prior estimation from positive and unlabeled data.
IEICE Transactions on Information and Systems, 97(5):1358-1362, 2014.

M. C. du Plessis, G. Niu, and M. Sugiyama. Analysis of learning from positive and unlabeled
data. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems 27: Annual Conference on Neural
Information Processing Systems 2014, pages 703711, 2014.

M. C. du Plessis, G. Niu, and M. Sugiyama. Convex formulation for learning from positive and
unlabeled data. In Proceedings of the 32nd International Conference on Machine Learning,
ICML 2015, volume 37 of JMLR Workshop and Conference Proceedings, pages 1386—1394,
2015.

R. M. Dudley. Uniform Central Limit Theorems. Cambridge University Press, 1999.

C. Dwork, M. Hardt, T. Pitassi, O. Reingold, and R. S. Zemel. Fairness through awareness. In
Innovations in Theoretical Computer Science 2012, pages 214-226. ACM, 2012.

M. Egozcue and L. F. Garcia. The variance upper bound for a mixed random variable. Commu-
nications in Statistics - Theory and Methods, 47(22):5391-9395, 2018.

C. Fellbaum, editor. WordNet: an electronic lexical database. MIT Press, 1998.

P. Festa, P. Pardalos, and M. C. Resende. Feedback Set Problems, pages 209-258. Springer US,
Boston, MA, 1999.

T. R. Fleming and D. P. Harrington. Counting processes and survival analysis. John Wiley &
Sons, 2011.



Bibliography 232

Y. Freund, R. D. Iyer, R. E. Schapire, and Y. Singer. An efficient boosting algorithm for
combining preferences. Journal of Machine Learning Research, 4:933-969, 2003.

N. Furl, P. J. Phillips, and A. O’Toole. Face recognition algorithms and the other-race effect:
Computational mechanisms for a developmental contact hypothesis. Cognitive Science, 26:
797-815, 11 2002.

J. Firnkranz. Round robin classification. Journal of Machine Learning Research, 2:721-747,
2002.

J. Garcke and T. Vanck. Importance weighted inductive transfer learning for regression. In
Machine Learning and Knowledge Discovery in Databases - European Conference, ECML
PKDD 2014. Proceedings, Part I, volume 8724 of Lecture Notes in Computer Science, pages
466-481. Springer, 2014.

K. Gates. Our Biometric Future: Facial Recognition Technology and the Culture of Surveillance.
NYU Press, 2011.

J. Goldberger, S. T. Roweis, G. E. Hinton, and R. Salakhutdinov. Neighbourhood components
analysis. In Advances in Neural Information Processing Systems 17 [Neural Information
Processing Systems, NIPS 2004], pages 513-520, 2004.

1. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.

P. Grother and M. Ngan. Face Recognition Vendor Test (FRVT) — Performance of Automated
Gender Classification Algorithms. Technical Report NISTIR 8052, National Institute of
Standards and Technology (NIST), 2019.

M. Guillaumin, J. J. Verbeek, and C. Schmid. Is that you? metric learning approaches for face
identification. In IEEE 12th International Conference on Computer Vision, ICCV 2009, pages
498-505. IEEE Computer Society, 2009.

Y. Guo, L. Zhang, Y. Hu, X. He, and J. Gao. Ms-celeb-1lm: A dataset and benchmark for
large-scale face recognition. In Computer Vision - ECCV 2016 - 1th European Conference,
Proceedings, Part III, volume 9907 of Lecture Notes in Computer Science, pages 87—-102.
Springer, 2016.

L. Gyorfi. Principles of Nonparametric Learning. Springer, 2002.

M. Hardt, E. Price, and N. Srebro. Equality of opportunity in supervised learning. In Advances
in Neural Information Processing Systems 29: Annual Conference on Neural Information
Processing Systems 2016, pages 3315-3323, 2016.

M. A. Hasnat, J. Bohné, J. Milgram, S. Gentric, and L. Chen. von Mises-Fisher Mixture
Model-based Deep learning: Application to Face Verification. CoRR, abs/1706.04264, 2017.

T. Hastie and R. Tibshirani. Classification by pairwise coupling. In Advances in Neural
Information Processing Systems 10, [NIPS Conference, 1997], pages 507-513. The MIT Press,
1997.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. pages 770-778,
2016.

L. A. Hendricks, K. Burns, K. Saenko, T. Darrell, and A. Rohrbach. Women also snowboard:
Overcoming bias in captioning models. In Computer Vision - ECCV 2018 - 15th European
Conference, Proceedings, Part III, volume 11207 of Lecture Notes in Computer Science, pages
793-811. Springer, 2018.

W. Hoeffding. A class of statistics with asymptotically normal distribution. The Annals of
Mathematical Statistics, 19:293-325, 1948.

W. Hoeflding. Probability inequalities for sums of bounded random variables. Journal of the
American Statistical Association, 58(301):13-30, 1963.



233 Bibliography

F. Hsieh and B. W. Turnbull. Nonparametric and semiparametric estimation of the receiver
operating characteristic curve. The Annals of Statistics, 24(1):25-40, 1996.

J. Huang, A. J. Smola, A. Gretton, K. M. Borgwardt, and B. Scholkopf. Correcting sample
selection bias by unlabeled data. In Advances in Neural Information Processing Systems 19,
Proceedings of the Twentieth Annual Conference on Neural Information Processing Systems,
pages 601-608. MIT Press, 2006.

J. Huo, Y. Gao, Y. Shi, and H. Yin. Cross-modal metric learning for auc optimization. IEEFE
Transactions on Neural Networks and Learning Systems, PP(99):1-13, 2018.

H. D. II1, J. M. Phillips, A. Saha, and S. Venkatasubramanian. Protocols for learning classifiers
on distributed data. In Proceedings of the Fifteenth International Conference on Artificial
Intelligence and Statistics, AISTATS 2012, volume 22 of JMLR Proceedings, pages 282—290,
2012.

A. Jain, L. Hong, and S. Pankanti. Biometric identification. Communications of the ACM, 43(2):
90-98, 2000.

A. K. Jain, A. Ross, and S. Prabhakar. An introduction to biometric recognition. IEEE
Transactions on Clircuits and Systems for Video Technology, 14(1):4-20, 2004.

A. K. Jain, A. A. Ross, and K. Nandakumar. Introduction to Biometrics. Springer, 2011.

R. Jin, S. Wang, and Y. Zhou. Regularized distance metric learning: Theory and algorithm. In
Advances in Neural Information Processing Systems 22: 23rd Annual Conference on Neural
Information Processing Systems 2009, pages 862-870. Curran Associates, Inc., 2009.

T. Joachims. Optimizing search engines using clickthrough data. In Proceedings of the Eighth
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages
133-142. ACM, 2002.

M. Jordan. On statistics, computation and scalability. Bernoulli, 19(4):1378-1390, 2013.
J. Jost. Riemannian Geometry and Geometric Analysis. Springer, 2011.

N. Kallus and A. Zhou. The fairness of risk scores beyond classification: Bipartite ranking and the
XAUC metric. In Advances in Neural Information Processing Systems 32: Annual Conference
on Neural Information Processing Systems 2019, NeurIPS 2019, pages 3433-3443. 2019.

E. L. Kaplan and P. Meier. Nonparametric estimation from incomplete observations. Journal of
the American statistical association, 53(282):457-481, 1958.

J. G. Kemeny. Mathematics without numbers. Daedalus, (88):571-591, 1959.

R. Kiryo, G. Niu, M. C. du Plessis, and M. Sugiyama. Positive-unlabeled learning with non-
negative risk estimator. In Advances in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems 2017, pages 1675-1685, 2017.

J. M. Kleinberg, S. Mullainathan, and M. Raghavan. Inherent trade-offs in the fair determination
of risk scores. In 8th Innovations in Theoretical Computer Science Conference, ITCS 2017,
volume 67 of LIPIcs, pages 43:1-43:23. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik,
2017.

A. Korba. Learning from ranking data : theory and methods. PhD thesis, 2018. These de doctorat
dirigée par Stephan Clémencon - Mathématiques appliquées - Université Paris-Saclay (ComUE)
2018.

A. Korba, S. Clémengon, and E. Sibony. A learning theory of ranking aggregation. In Proceedings
of the 20th International Conference on Artificial Intelligence and Statistics, AISTATS 2017,
volume 54 of Proceedings of Machine Learning Research, pages 1001-1010. PMLR, 2017.

A. Korba, A. Garcia, and F. d’Alché-Buc. A structured prediction approach for label ranking.
In Advances in Neural Information Processing Systems 31: Annual Conference on Neural
Information Processing Systems 2018, NeurIPS 2018, pages 9008-9018. 2018.



Bibliography 234

M. Kostinger, M. Hirzer, P. Wohlhart, P. M. Roth, and H. Bischof. Large scale metric learning
from equivalence constraints. In 2012 IEEE Conference on Computer Vision and Pattern
Recognition, pages 2288-2295. IEEE Computer Society, 2012.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional
neural networks. In Advances in Neural Information Processing Systems 25: 26th Annual
Conference on Neural Information Processing Systems 2012, pages 1106-1114. 2012.

B. Kulis. Metric Learning: A Survey. Foundations and Trends in Machine Learning, 5(4):
287-364, 2012.

P. Laforgue and S. Clémencon. Statistical learning from biased training samples. CoRR,
abs/1906.12304, 2019.

A. J. Lee. U-statistics: Theory and practice. Marcel Dekker, Inc., New York, 1990.

E. Lehmann and J. P. Romano. Testing Statistical Hypotheses. Springer Texts in Statistics.
Springer-Verlag New York, LLC, New York, third edition, 2005.

T.-Y. Liu. Learning to Rank for Information Retrieval. Springer, 2011.

W. Liu, X. Tian, D. Tao, and J. Liu. Constrained metric learning via distance gap maximization.
In Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2010.
AAATI Press, 2010.

Z. Liu, J. Yang, H. Liu, and W. Wang. Transfer learning by sample selection bias correction and
its application in communication specific emitter identification. Journal of Communication, 11

(4):417-427, 2016.
R. D. Luce. Individual Choice Behavior. Wiley, 1959.

E. Mammen and A. Tsybakov. Smooth discrimination analysis. The Annals of Statistics, 27(6):
1808-1829, 1999.

E. Mammen and A. B. Tsybakov. Asympotical minimax recovery of the sets with smooth
boundaries. The Annals of Statistics, 23(2):502-524, 1995.

B. Mason, L. Jain, and R. D. Nowak. Learning low-dimensional metrics. In Advances in Neural
Information Processing Systems 30: Annual Conference on Neural Information Processing
Systems 2017, pages 4139-4147, 2017.

P. Massart and E. Nédélec. Risk bounds for statistical learning. Annals of Statistics, 34(5), 2006.

B. McFee and G. R. G. Lanckriet. Metric learning to rank. In Proceedings of the 27th International
Conference on Machine Learning (ICML-10), pages 775-782. Omnipress, 2010.

D. McNamara, C. S. Ong, and R. C. Williamson. Costs and benefits of fair representation
learning. In Proceedings of the 2019 AAAI/ACM Conference on Al, Ethics, and Society, 2019.

A. K. Menon and R. C. Williamson. Bipartite ranking: a risk-theoretic perspective. Journal of
Machine Learning Research, 17(195):1-102, 2016.

A. K. Menon and R. C. Williamson. The cost of fairness in binary classification. In Conference
on Fairness, Accountability and Transparency, FAT 2018, volume 81 of Proceedings of Machine
Learning Research, pages 107-118. PMLR, 2018.

A. E. Mesaoudi-Paul, E. Hiillermeier, and R. Busa-Fekete. Ranking distributions based on noisy
sorting. In Proceedings of the 35th International Conference on Machine Learning, ICML 2018,
volume 80 of Proceedings of Machine Learning Research, pages 3469-3477. PMLR, 2018.

M. Mignotte. Mathematics for Computer Algebra. Springer-Verlag, Berlin, Heidelberg, 1992.

S. Minaee, E. Azimi, and A. Abdolrashidi. Fingernet: Pushing the limits of fingerprint recognition
using convolutional neural network. CoRR, abs/1907.12956, 2019.



235 Bibliography

M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of Machine Learning. MIT Press,
2012.

M. Moreira and E. Mayoraz. Improved pairwise coupling classification with correcting classifiers.
In Machine Learning: ECML-98, 10th European Conference on Machine Learning, Proceedings,
volume 1398 of Lecture Notes in Computer Science, pages 160-171. Springer, 1998.

K. Musgrave, S. Belongie, and S.-N. Lim. A metric learning reality check. CoRR, abs/2003.08505,
2020.

S. Nagpal, M. Singh, R. Singh, M. Vatsa, and N. Ratha. Deep learning for face recognition: Pride
or prejudiced? arXiv preprint arXiv:1904.01219, 2019.

C. O'Neil. Weapons of Math Destruction: How Big Data Increases Inequality and Threatens
Democracy. Crown Publishing Group, USA, 2016.

O. B. P. Bartlett and S. Mendelson. Localized rademacher complexities. The Annals of Statistics,
33(1):497-1537, 2005.

S. J. Pan and Q. Yang. A survey on transfer learning. IEEFE Transactions on Knowledge and
Data Engineering, 22(10):1345-1359, 2010.

G. Papa, S. Clémencon, and A. Bellet. SGD algorithms based on incomplete u-statistics: Large-
scale minimization of empirical risk. In Advances in Neural Information Processing Systems 28:
Annual Conference on Neural Information Processing Systems 2015, pages 1027-1035, 2015.

A. Papoulis. Probability, Random Variables, and Stochastic Processes. McGraw-Hill, 1965.

O. M. Parkhi, A. Vedaldi, and A. Zisserman. Deep face recognition. In Proceedings of the British
Machine Vision Conference 2015, BMVC 2015, pages 41.1-41.12. BMVA Press, 2015.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825-2830, 2011.

K. B. Petersen and M. S. Pedersen. The matrix cookbook, 2008.

P. J. Phillips, F. Jiang, A. Narvekar, J. H. Ayyad, and A. J. O’Toole. An other-race effect for
face recognition algorithms. ACM Trans. Appl. Percept., 8(2):14:1-14:11, 2011.

R. L. Plackett. The analysis of permutations. Applied Statistics, 2(24):193-202, 1975.

G. Pleiss, M. Raghavan, F. Wu, J. M. Kleinberg, and K. Q. Weinberger. On fairness and
calibration. In Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, pages 5680-5689, 2017.

W. Polonik. Measuring Mass Concentrations and Estimating Density COntour Clusters - An
Excess Mass Approach. The Annals of Statistics, 23(3):855-881, 1995.

W. Polonik. Minimum volume sets and generalized quantile processes. Stochastic Processes and
their Applications, 69(1):1-24, 1997.

J. Quinlan. Induction of Decision Trees. Machine Learning, 1(1):1-81, 1986.

I. Redko, E. Morvant, A. Habrard, M. Sebban, and Y. Bennani. Advances in Domain Adaptation
Theory. Elsevier, 2019.

P. Rigollet and X. Tong. Neyman-pearson classification, convexity and stochastic constraints.
Journal of Machine Learning Research, 12:2831-2855, 2011.

S. Ruder. An overview of gradient descent optimization algorithms. CoRR, abs/1609.04747, 2016.

C. Rudin. Ranking with a p-norm push. In Learning Theory, 19th Annual Conference on
Learning Theory, COLT 2006, volume 4005 of Lecture Notes in Computer Science, pages
589-604. Springer, 2006.



Bibliography 236

C. Rudin, C. Wang, and B. Coker. The age of secrecy and unfairness in recidivism prediction.
CoRR, abs/1811.00731, 2018.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,
M. S. Bernstein, A. C. Berg, and F. Li. Imagenet large scale visual recognition challenge.
CoRR, abs/1409.0575, 2014.

F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified embedding for face recognition
and clustering. CoRR, abs/1503.03832, 2015.

C. Scott. Performance measures for neyman-pearson classification. IFEFE Transactions on
Information Theory, 53:2852-2863, 2007.

C. Scott and R. Nowak. A Neyman-Pearson approach to statistical learning. IEEFE Transactions
on Information Theory, 51(11):3806-3819, Nov 2005.

C. Scott and R. Nowak. Learning minimum volume sets. Journal of Machine Learning Research,
7:665-704, 2006.

R. Sedgewick and K. Wayne. Algorithms, 4th Edition. Addison-Wesley, 2011.
R. J. Serfling. Approxzimation theorems of mathematical statistics. Wiley, 1980.

S. Shalev-Shwartz and S. Ben-David. Understanding Machine Learning: From Theory to
Algorithms. Cambridge University Press, USA, 2014.

C. Shen, J. Kim, L. Wang, and A. van den Hengel. Positive Semidefinite Metric Learning Using
Boosting-like Algorithms. Journal of Machine Learning Research, 13:1007-1036, 2012.

G. Shorack. Probability for Statisticians. Springer, 2000.
G. Shorack and J. a. Wellner. Empirical Processes with applications to Statistics. STAM, 1989.

A. Singh and T. Joachims. Fairness of exposure in rankings. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2018, pages
2219-2228. ACM, 2018.

A. Singh and T. Joachims. Policy learning for fairness in ranking. In Advances in Neural
Information Processing Systems 32: Annual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, pages 5427-5437, 2019.

S. Smale and D.-X. Zhou. Estimating the approximation error in learning theory. Analysis and
Applications, 01:17-41, 2003.

V. Smith, S. Forte, C. Ma, M. Takdc, M. I. Jordan, and M. Jaggi. CoCoA: A General Framework
for Communication-Efficient Distributed Optimization. Journal of Machine Learning Research,
18(230):1-49, 2018.

A. Storkey. When training and test sets are different: characterizing learning transfer. Dataset
shift in machine learning, pages 3—28, 2009.

E. Strubell, A. Ganesh, and A. McCallum. Energy and policy considerations for deep learning in
NLP. In Proceedings of the 57th Conference of the Association for Computational Linguistics,
ACL 2019, Volume 1: Long Papers, pages 3645-3650, 2019.

M. Sugiyama, S. Nakajima, H. Kashima, P. von Biinau, and M. Kawanabe. Direct importance
estimation with model selection and its application to covariate shift adaptation. In Advances in
Neural Information Processing Systems 20, Proceedings of the Twenty-First Annual Conference
on Neural Information Processing Systems, pages 1433-1440. Curran Associates, Inc., 2007.

R. Szeliski. Computer Vision: Algorithms and Applications. Springer, 2011.

Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Deepface: Closing the gap to human-level
performance in face verification. In 2014 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2014, pages 1701-1708. IEEE Computer Society, 2014.



237 Bibliography

G. Tsoumakas, I. Katakis, and I. Vlahavas. Mining multi-label data. In Data mining and
knowledge discovery handbook, pages 667—685. Springer, 2009.

M. A. Turk and A. Pentland. Face recognition using eigenfaces. In IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, CVPR 1991, pages 586-591. IEEE,
1991.

L. van der Maaten and G. Hinton. Visualizing Data using t-SNE. Journal of Machine Learning
Research, 9:2579-2605, 2008.

A. W. van der Vaart. Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic
Mathematics, 2000.

A. W. van der Vaart and J. a. Wellner. Weak convergence and empirical processes. 1996.
V. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.

S. Vembu and T. Géartner. Label ranking algorithms: A survey. In Preference learning, pages
45-64. Springer, 2010.

N. Verma and K. Branson. Sample complexity of learning mahalanobis distance metrics. In Ad-
vances in Neural Information Processing Systems 28: Annual Conference on Neural Information
Processing Systems 2015, pages 2584-2592, 2015.

R. Vogel, A. Bellet, and S. Clémencon. A probabilistic theory of supervised similarity learning
for pointwise ROC curve optimization. In Proceedings of the 35th International Conference on
Machine Learning, ICML 2018, volume 80 of Proceedings of Machine Learning Research, pages
5062-5071. PMLR, 2018.

F. Wang, J. Cheng, W. Liu, and H. Liu. Additive margin softmax for face verification. IEEE
Signal Processing Letters, 25(7):926-930, 2018.

M. Wang and W. Deng. Deep face recognition: A survey. CoRR, abs/1804.06655, 2018.

M. Wang, W. Deng, J. Hu, X. Tao, and Y. Huang. Racial faces in the wild: Reducing racial
bias by information maximization adaptation network. In 2019 IEEE/CVF International
Conference on Computer Vision, ICCV 2019, pages 692-702. IEEE, 2019.

L. Wasserman. All of Statistics: A Concise Course in Statistical Inference. Springer, 2010.

K. Q. Weinberger and L. K. Saul. Distance Metric Learning for Large Margin Nearest Neighbor
Classification. Journal of Machine Learning Research, 10:207-244, 2009.

Y. Wen, K. Zhang, Z. Li, and Y. Qiao. A discriminative feature learning approach for deep face
recognition. In Computer Vision - ECCV 2016 - 14th European Conference, Proceedings, Part
VII, volume 9911 of Lecture Notes in Computer Science, pages 499-515. Springer, 2016.

J. Weston and C. Watkins. Support vector machines for multi-class pattern recognition. In
ESANN 1999, 7th European Symposium on Artificial Neural Networks, pages 219-224, 1999.

R. C. Williamson and A. K. Menon. Fairness risk measures. In Proceedings of the 36th International
Conference on Machine Learning, ICML 2019, volume 97 of Proceedings of Machine Learning
Research, pages 6786-6797. PMLR, 2019.

B. E. Woodworth, S. Gunasekar, M. I. Ohannessian, and N. Srebro. Learning non-discriminatory
predictors. In Proceedings of the 30th Conference on Learning Theory, COLT 2017, volume 65
of Proceedings of Machine Learning Research, pages 1920-1953. PMLR, 2017.

T. Wu, C. Lin, and R. Weng. Probability estimates for multi-class classification by pairwise
coupling. Journal of Machine Learning Research, 5:975-1005, 2004.

H. Xiao, K. Rasul, and R. Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. CoRR, abs/1708.07747, 2017.

P. Xie and E. P. Xing. Large scale distributed distance metric learning. CoRR, abs/1412.5949,
2014.



Bibliography 238

E. P. Xing, A. Y. Ng, M. I. Jordan, and S. J. Russell. Distance metric learning with application
to clustering with side-information. In Advances in Neural Information Processing Systems 15
[Neural Information Processing Systems, NIPS 2002], pages 505-512. MIT Press, 2002.

E. P. Xing, Q. Ho, W. Dai, J. K. Kim, J. Wei, S. Lee, X. Zheng, P. Xie, A. Kumar, and Y. Yu.
Petuum: A New Platform for Distributed Machine Learning on Big Data. IEEE Transactions
on Big Data, 1(2):49-67, 2015.

M. B. Zafar, I. Valera, M. Gomez-Rodriguez, and K. P. Gummadi. Fairness beyond disparate
treatment & disparate impact: Learning classification without disparate mistreatment. In
Proceedings of the 26th International Conference on World Wide Web, WWW 2017, pages
1171-1180. ACM, 2017a.

M. B. Zafar, 1. Valera, M. Gomez-Rodriguez, and K. P. Gummadi. Fairness constraints: Mecha-
nisms for fair classification. In Proceedings of the 20th International Conference on Artificial
Intelligence and Statistics, AISTATS 2017, volume 54 of Proceedings of Machine Learning
Research, pages 962-970. PMLR, 2017b.

M. B. Zafar, I. Valera, M. Gomez-Rodriguez, and K. P. Gummadi. Fairness constraints: A flexible
approach for fair classification. Journal of Machine Learning Research, 20(75):1-42, 2019.

M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark: Cluster computing
with working sets. In 2nd USENIX Workshop on Hot Topics in Cloud Computing, HotCloud’10.
USENIX Association, 2010.

M. Zehlike, F. Bonchi, C. Castillo, S. Hajian, M. Megahed, and R. Baeza-Yates. Fa*ir: A fair
top-k ranking algorithm. In Proceedings of the 2017 ACM on Conference on Information and
Knowledge Management, CIKM 2017, pages 1569-1578. ACM, 2017.

J. Zhao, T. Wang, M. Yatskar, V. Ordonez, and K. Chang. Men also like shopping: Reducing
gender bias amplification using corpus-level constraints. In Proceedings of the 2017 Confer-
ence on Empirical Methods in Natural Language Processing, EMNLP 2017, pages 2979-2989.
Association for Computational Linguistics, 2017.

P. Zhao, S. C. H. Hoi, R. Jin, and T. Yang. Online AUC maximization. In Proceedings of the
28th International Conference on Machine Learning, ICML 2011, pages 233-240. Omnipress,
2011.

B. Zou, H. Zhang, and Z. Xu. Learning from uniformly ergodic markov chains. Journal of
Complexity, 25(2):188-200, 2009.



QLYTEQ’

¥ .. | ECOLE
;"‘\ > | DOCTORALE
= " | DE MATHEMATIQUES
5 ¥ | HADAMARD

@
_rrl.

Titre : Ordonnancement par Similarité pour la Biométrie: Théorie et Pratique

Mots clés : Biométrie, Apprentissage Statistique, Ordonnancement Bipartite, Apprentissage de Similarité,

Biais algorithmique

Résumé : Laugmentation rapide de la population
combinée a la mobilité croissante des individus a en-
gendré le besoin de systémes de gestion d’identités
sophistiqués. A cet effet, le terme biométrie se référe
généralement aux méthodes permettant d’identifier
les individus en utilisant des caractéristiques bio-
logiques ou comportementales. Les méthodes les
plus populaires, c’est-a-dire la reconnaissance d’em-
preintes digitales, d'iris ou de visages, se basent
toutes sur des méthodes de vision par ordinateur.
Ladoption de réseaux convolutifs profonds, rendue
possible par le calcul générique sur processeur gra-
phique, ont porté les récentes avancées en vision par
ordinateur. Ces avancées ont permis une amélioration
drastique des performances des méthodes conven-
tionnelles en biométrie, ce qui a accéléré leur adop-
tion pour des usages concrets, et a provoqué un débat
public sur l'utilisation de ces techniques. Dans ce
contexte, les concepteurs de systémes biométriques
sont confrontés a un grand nombre de challenges
dans I'apprentissage de ces réseaux.

Dans cette thése, nous considérons ces chal-
lenges du point de vue de l'apprentissage statis-
tique théorique, ce qui nous améne a proposer ou
esquisser des solutions concrétes. Premierement,

nous répondons a une prolifération de travaux sur
'apprentissage de similarité pour les réseaux pro-
fonds, qui optimisent des fonctions objectif détachées
du but naturel d’ordonnancement recherché en
biométrie. Précisément, nous introduisons la no-
tion d’ordonnancement par similarité, en mettant en
évidence la relation entre 'ordonnancement bipartite
et la recherche d’une similarité adaptée a I'identifica-
tion biométrique. Nous étendons ensuite la théorie sur
'ordonnancement bipartite a ce nouveau probléme,
tout en l'adaptant aux spécificités de I'apprentissage
sur paires, notamment concernant son co(it computa-
tionnel.

Les fonctions objectif usuelles permettent d’optimi-
ser la performance prédictive, mais de récents tra-
vaux ont mis en évidence la nécessité de prendre en
compte d’autres facteurs lors de I'entrainement d’un
systéme biométrique, comme les biais présents dans
les données, la robustesse des prédictions ou en-
core des questions d’équité. La thése aborde ces trois
exemples, en propose une étude statistique minu-
tieuse, ainsi que des méthodes pratiques qui donnent
les outils nécessaires aux concepteurs de systemes
biométriques pour adresser ces problématiques, sans
compromettre la performance de leurs algorithmes.

Titre : Similarity Ranking for Biometrics: Theory and Practice

Keywords : Biometrics, Statistical Learning Theory, Ranking, Similarity Learning, Algorithmic biais

Abstract : The rapid growth in population, combined
with the increased mobility of people has created a
need for sophisticated identity management systems.
For this purpose, biometrics refers to the identification
of individuals using behavioral or biological characte-
ristics. The most popular approaches, i.e. fingerprint,
iris or face recognition, are all based on computer vi-
sion methods. The adoption of deep convolutional net-
works, enabled by general purpose computing on gra-
phics processing units, made the recent advances in
computer vision possible. These advances have led to
drastic improvements for conventional biometric me-
thods, which boosted their adoption in practical set-
tings, and stirred up public debate about these tech-
nologies. In this respect, biometric systems providers
face many challenges when learning those networks.
In this thesis, we consider those challenges from the
angle of statistical learning theory, which leads us to
propose or sketch practical solutions. First, we ans-
wer to the proliferation of papers on similarity learning

for deep neural networks that optimize objective func-
tions that are disconnected with the natural ranking
aim sought out in biometrics. Precisely, we introduce
the notion of similarity ranking, by highlighting the re-
lationship between bipartite ranking and the require-
ments for similarities that are well suited to biometric
identification. We then extend the theory of bipartite
ranking to this new problem, by adapting it to the spe-
cificities of pairwise learning, particularly those regar-
ding its computational cost.

Usual objective functions optimize for predictive per-
formance, but recent work has underlined the neces-
sity to consider other aspects when training a biome-
tric system, such as dataset bias, prediction robust-
ness or notions of fairness. The thesis tackles all of
those three examples by proposing their careful sta-
tistical analysis, as well as practical methods that pro-
vide the necessary tools to biometric systems manu-
facturers to address those issues, without jeopardi-
zing the performance of their algorithms.
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