
A Probabilistic Theory of Supervised Similarity Learning
for Pointwise ROC Curve Optimization

Robin Vogel1,3, Stéphan Clémençon1 and Aurélien Bellet2 1 Télécom ParisTech, 2 Inria, 3 IDEMIA

MOTIVATION
Biometric identification aims to check the claimed
identity of an individual by matching his biometric
information (e.g., a photo taken at an airport) with
another measurement (e.g., a passport photo). Given a
similarity function and a threshold, the pair is considered
matching if its score is above the threshold.

Performance criteria are hence related to the ROC
curve associated with the similarity function, i.e., the
relation between the false positive rate and the true
positive rate. In biometrics applications, the verification
system is typically set to keep the proportion of people
falsely considered a match below a predefined acceptable
threshold.

The performance criterion we consider in this work is
hence pointwise ROC optimization.

PRELIMINARIES
The random variable Y denotes thes output label with
values in the discrete set {1, . . . ,K} with K ≥ 1, and
X is the input random variable, taking its values in a
feature space X ⊂ Rd with d ≥ 1. The distribution of
the random pair (X,Y ) is written P .

The objective of similarity learning is to learn, from
a training sample Dn = {(X1, Y1), . . . , (Xn, Yn)}
composed of n ≥ 1 independent copies of (X,Y ), a
(measurable) similarity function S : X × X → R+ such
that given two independent pairs (X,Y ) and (X ′, Y ′)
drawn from P , the larger the similarity S(X,X ′)
between two observations, the more likely they are to
share the same label. The class S∗ of optimal similarity
rules naturally corresponds to the set of strictly increas-
ing transforms of the pairwise posterior probability
η(x, x′) = P{Y = Y ′ | (X,X ′) = (x, x′)}.

Pointwise ROC optimization for a false positive rate α ∈
(0, 1) can be written

max
S∈S

R+(S) subject to R−(S) ≤ α, (1)

where R+(S) = E[S(X,X ′) | Y = Y ′], R−(S) =
E[S(X,X ′) | Y 6= Y ′] and S is a proposal class of func-
tions. Neymann Pearson’s lemma implies that an opti-
mal solution is the indicator function of the set R∗α =
{(x, x′) ∈ X 2 : η(x, x′) ≥ Q∗α} where Q∗α is the condi-
tional quantile of η(X,X ′) given Y 6= Y ′ at level 1− α.

GENERALIZATION
We investigate the generalization ability of solutions ob-
tained by solving the empirical version of eq. (1). Natu-
ral estimates for the positive risk R+(S) and the negative
risk R−(S) computed on Dn are given by:

R̂+
n (S) =

1

n+

∑
1≤i<j≤n

S(Xi, Xj) · I{Yi = Yj},

R̂−n (S) =
1

n−

∑
1≤i<j≤n

S(Xi, Xj) · I{Yi 6= Yj},

where n+ =
∑

1≤i<j≤n I{Yi = Yj} = n(n − 1)/2 −
n−. Using these estimates, one can derive the following
empirical problem:

max
S∈S

R+
n (S) subject to R−n (S) ≤ α+ Φ, (2)

where we replaced the target level α by α+Φ, where Φ is
some tolerance parameter that should be of the same or-
der as the maximal deviation supS∈S |R̂−n (S)−R−(S)|.

Our first result describes the generalization capacities of
solutions of the constrained optimization problem eq. (2)
under specific conditions for the class S of similarity
functions and a suitable choice of the tolerance param-
eter Φ.

Theorem 1. Suppose that S is a VC-major class of
functions with finite VC-dimension V < +∞ and that
S(x, x′) ≤ 1 for all S ∈ S and any (x, x′) ∈ X 2. As-
sume also that there exists a constant κ ∈ (0, 1) such that
κ ≤ P{Y = Y ′} ≤ 1− κ. For all δ ∈ (0, 1) and n > 1,
set:

Φn,δ = 2Cκ−1
√
V

n
+ 2κ−1(1 + κ−1)

√
log(3/δ)

n− 1
,

where C is a known universal constant. Consider a so-
lution Ŝn of the contrained minimization problem eq. (2)
with Φ = Φn,δ/2. Then, for any δ ∈ (0, 1), we have
simultaneously with probability at least 1 − δ: ∀n ≥
1 + 4κ−2 log(3/δ),

R+(Ŝn) ≥ sup
S∈S: R−(S)≤α

R+(S)− Φn,δ/2

and R−(Ŝn) ≤ α+ Φn,δ/2.

It is established by combining an uniform bound over S
on the variations of R̂+

n around its mean, see [1], with
the derivations of [2] on pointwise ROC optimization for
bipartite ranking.

EXPERIMENT ON FAST RATES
This section illustrates the faster rates of generalization
presented in theorem 2. For that matter, we introduce
distributions that satisfy the noise assumption (NA) with
different a’s and show the difference in the generalization
speed.

We put ourselves in a simple scenario whereK = 2,X =
[0, 1], X ∼ U [0, 1], P{Y = 1} = 1/2 and Q∗α = 1/2. It
then suffices to define µ1 as the density of X conditioned
upon Y = 1 to have fully defined the distribution of the
pair (X,Y ). We introduce a family of µ1’s parameterized
by a, with two examples on fig. 1.
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Figure 1: Example distributions and µ1’s for two values of a.

For some a, the empirical 90-quantile of R+(S∗α) −
R+(Ŝn) is computed for different values of n and its log-
arithm is fitted to Ca × log(n) +Da to get the empirical
generalization speed Ca. The downward trend when a
increases illustrates the fast rates in practice, see fig. 2.
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Figure 2: Generalization speed for different values of a.
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FAST RATES
Except for a minor condition, the generalization bound
stated in theorem 1 holds whatever the probability distri-
bution of (X,Y ). This section introduce situations where
rates faster than O(1/

√
n) can be achieved by solutions

of eq. (2). It relies on the following noise assumption, that
resembles the so-called Mammen-Tsybakov noise condi-
tion:

Noise assumption (NA). There exist a constant c and
a ∈ [0, 1] such that, almost surely,

EX′
[
|η(X,X ′)−Q∗α|−a

]
≤ c.

By means of a variant of the Bernstein inequality for U -
statistics, we can establish fast rate bounds under the pre-
ceding condition on the data distribution, which write:

Theorem 2. Suppose that the assumptions of Theorem 1
are satisfied, that condition NA holds true and that the
optimal similarity rule S∗α(x, x′) = I{(x, x′) ∈ R∗α} be-
longs to S. Fix δ > 0. Then, there exists a constant C ′,
depending on δ, κ, Q∗α, a, c and V such that, with proba-
bility at least 1− δ,

R+(S∗α)−R+(Ŝn) ≤ C ′n−(2+a)/4,
and R−(Ŝn) ≤ α+ 2Φn,δ/2.

SCALABILITY
In the large-scale setting, solving eq. (2) can be compu-
tationally costly due to the very large number of train-
ing pairs. In the setting where we have a large number
of classes, the number of negative pairs is dramatically
higher than that of positive pairs. A natural strategy is to
drastically subsample the negative pairs, while keeping
all positive pairs.
For that matter, we study the equivalent of eq. (2) when
replacing R̂−n (S) by the following approximation:

R̄−B(S) :=
1

B

∑
(i,j)∈PB

S(Xi, Xj),

where PB is a set of cardinality B built by sampling with
replacement in the set of negative training pairs ΛP =
{(i, j) | i, j ∈ {1, . . . , n};Yi 6= Yj}. In [3], we show that
the results of theorem 1 still hold, with a different Φ of the
order O(

√
log n/B)). Remarkably, this implies that it is

sufficient to sample B = O(n) pairs to get an order of
O(
√

log(n)/n) learning rate in theorem 1.


