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MOTIVATION
Biometric identification =
checks correspondance of two measurements (x, x′).

Given a similarity S and a threshold t,

(x, x′) is a match ⇔ S(x, x′) > t. (1)

The ROC curve of S gives the true positive rate
(TPR) given the false positive rate (FPR) for eq. (1).

Biometric systems are deployed to function at fixed
FPR, see [1], hence we study pointwise ROC opti-
mization.
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CONTRIBUTIONS
Proposition of an appropriate probabilistic frame-
work for a novel perspective on similarity learning.

Statistical guarantees for the constrained optimiza-
tion problem corresponding to the empirical version
of our theoretical objective, i.e. pointwise ROC
optimization in the context of pairwise ranking.

Faster rates under a weak low-noise assumption.

Empirical illustration of the faster rates through
numerical simulations.

Study of sampling strategies for scalability issues that
arise from the high number of negative pairs.

GENERALIZATION
Generalization guarantees. Our theorem describes
the generalization capacities of the solution of
eq. (3) , under some conditions on G0 and a suitable

choice of Φ.

Theorem 1. Suppose that:

• G0 is a VC-major class of VC-dimension V ,

• ∀G ∈ G0, ‖G‖∞ ≤ 1,

• ∃κ ∈ (0, 1) such that κ ≤ P{Y = Y ′} ≤
1− κ,

For all δ ∈ (0, 1) and n > 1, :

• set Φn,δ = CV,δ,κ · n−1/2,
where CV,δ,κ is known and depends on
V, δ, κ,

• Let Ĝn solution of eq. (3) with Φ =
Φn,δ/2,

We have w.p. ≥ 1− δ, ∀n ≥ 1 + 4κ−2 log(3/δ),

R+(Ĝn) ≥ sup
G∈G0: R−(G)≤α

R+(G)− Φn,δ/2,

and R−(Ĝn) ≤ α+ Φn,δ/2.

SCALABILITY
When n large and K large, calculating R−n (G)
is computationally costly. A sensible approach is
to drastically subsample the negative pairs, while
keeping all positive pairs.

We studied the equivalent of eq. (3) when replacing

R̂−n (G) by the following approximation:

R̄−B(G) :=
1

B

∑
(i,j)∈PB

G(Xi, Xj),

where PB is a set of cardinality B built by sampling
with replacement in the set of negative training pairs
ΛP , with:

ΛP = {(i, j) | i, j ∈ {1, . . . , n};Yi 6= Yj} .

We show that the results of theorem 1 still hold,
with a different Φ of the order O(

√
log(n)/B)),

using results from [2].

It implies that it is sufficient to sample B = O(n)
pairs to get a learning rate of order O(

√
log(n)/n).

EXPERIMENT ON FAST RATES
We illustrate the results presented in theorem 2.

How ?
Introduce distributions that satisfy (NA) with differ-
ent a’s, and show the difference in the generalization
speed.

DefiningK = 2,X ∼ U [0, 1], P{Y = 1} = 1/2 and
the density µ1 of X | Y = 1 fully caracterizes P .
Hence we define a family of µ1’s parameterized by a.

For some a, the 90-quantile of log(R+(G∗α) −
R+(Ĝn)) for different n’s is fitted to Ca × log(n) +
Da to get the empirical generalization speed Ca.
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FAST RATES
In some situations, rates faster than O(1/

√
n) can

be achieved by solutions of eq. (3) . These rates
hold when the following noise assumption is verified:

Noise assumption (NA). ∃ c ∈ R∗+, a ∈ [0, 1] s.t.,

EX′
[
|η(X,X ′)−Q∗α|−a

]
≤ c a.s.

Our next theorem establishes fast rate bounds under
the (NA) condition on the data distribution. It
relies on a variant of the Bernstein inequality for
U -statistics.

Theorem 2. Suppose that:

• the assumptions of theorem 1 are satisfied,

• NA holds true,

• G∗α ∈ G0,

Fix δ > 0, there exists C ′, that depends of δ, κ,
Q∗α, a, c and V such that, w.p. ≥ 1− δ,

R+(Ĝn) ≥ R+(G∗α)− C ′ · n−(2+a)/4,
and R−(Ĝn) ≤ α+ Φn,δ/2.

PRELIMINARIES
Classification setting. Assume (X,Y ) ∼ P , with:

• Y ∈ {1, . . . ,K} the output label,

• X ∈ X ⊂ Rd input random variable.

Similarity learning. Select a similarity S s.t.

the larger S(X,X ′) the higher P{Y = Y ′ | X,X ′},

with (X,Y ) ⊥ (X ′, Y ′) ∼ P .

Optimal similarity rules S∗ are increasing transforms
of the posterior probability η:

η(x, x′) = P{Y = Y ′ | (X,X ′) = (x, x′)}.

Pointwise ROC optimization. Given α ∈ (0, 1),

max
G∈G0

R+(G) subject to R−(G) ≤ α, (2)

where R+(G) = E[G(X,X ′) | Y = Y ′] ,
R−(G) = E[G(X,X ′) | Y 6= Y ′] and G0 a class of
functions.

By the Neyman-Pearson lemma:

G∗α := IR∗α optimal solution of eq. (2) ,

where R∗α = {(x, x′) ∈ X 2 : η(x, x′) ≥ Q∗α}, with
Q∗α quantile of η(X,X ′) | Y 6= Y ′ at level 1− α.

Empirical problem. Using a training sample:

Dn = {(X1, Y1), . . . , (Xn, Yn)} ,

composed of n i.i.d. copies of (X,Y ), we form esti-
mates of R+(G) and R−(G):

R̂+
n (G) =

1

n+

∑
1≤i<j≤n

G(Xi, Xj) · I{Yi = Yj},

R̂−n (G) =
1

n−

∑
1≤i<j≤n

G(Xi, Xj) · I{Yi 6= Yj},

with n+ =
∑

1≤i<j≤n

I{Yi = Yj} = n(n− 1)/2− n−.

One can then derive the empirical version of eq. (2) :

max
G∈G0

R+
n (G) subject to R−n (G) ≤ α+ Φ, (3)

where Φ > 0 is some tolerance parameter.
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