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Biometric verification (1/2)

𝑆 𝑋, 𝑋′ > 𝑡

A biometric system uses:
I Twomeasurements X and X′,
I A similarity S that quantifies the likeness of (X, X′),
I A threshold t that separates positive and negative pairs.

Aim: S(X, X′) > t is a good indicator of Z = +1 with:

Z =

{
+1 if (X, X′) from the same person,
−1 otherwise.

Two types of errors:

TPRS(t) := P{S(X, X′) > t | Z = +1},
FPRS(t) := P{S(X, X′) > t | Z = −1}.

The set {(FPRS(t), TPRS(t)) | t ∈ R} is known as the ROC curve.
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Biometric verification (2/2)
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Figure: Example of a ROC curve (Source: NIST FRVT reports.)

Pointwise ROC optimization (pROC):

Maximize TPR s.t. FPR≤ α,
with α some target, for example α = 10−3.

Objective:
Procedure to solve pROC from data, and theoretical guarantees.
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Related work

[Clémençon and Vayatis, 2008]
→ guarantees for ERM for pROC for bipartite ranking.

I Bipartite ranking: Rank X1, X2, . . . by relevance,

I Similarity ranking: Rank (X1, X2), (X1, X3), . . . by similarity.

Their analysis does not generalize to similarity ranking.
→ Ours requires results on U-statistics, see [Lee, 1990] and
[Clémençon et al., 2008].

Instead of a constrained approach, asymmetric weighting of
positive and negative risks is common in metric learning.
→ Theoretical guarantees exist, see [Cao et al., 2016].

However, we have no indication on the asymmetry factor γ that
guarantees FPR≤ α.
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Our problem (1/3)
We introduce the following problem:

max
G∈G

R+(G) s.t. R−(G) ≤ α, (1)

with R+(G) = E
[
G(X, X′) | Z = +1

]
and R−(G) = E

[
G(X, X′) | Z = −1

]
.

Remark:When G(X, X′) = I{S(X, X′) > t}, eq. (1) is pROC.
Our dataDn follows a standard classificationmodel, i.e.

Dn = {(X1, Y1), . . . , (Xn, Yn)} ,

is composed of n i.i.d copies of (X, Y) ∼ Pwhere Y ∈ {1, . . . ,K}.

Given (X, Y) ⊥ (X′, Y ′) ∼ P, it follows that:

Z =

{
+1 Y = Y ′,
−1 Y 6= Y ′.
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Our problem (2/3)
Theoretical problem:

max
G∈G

R+(G) s.t. R−(G) ≤ α, (1)

with R+(G) = E
[
G(X, X′) | Z = +1

]
and R−(G) = E

[
G(X, X′) | Z = −1

]
.

We can estimate the quantities R+(G) and R−(G) by:

R+n (G) :=
1
n+

∑
i<j

G(Xi, Xj) · I{Yi = Yj},

R−n (G) :=
1
n−

∑
i<j

G(Xi, Xj) · I{Yi 6= Yj},

where n+ =
∑

i<j I{Yi = Yj} = n(n− 1)/2− n−.

We can now derive an empirical problem !
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Our problem (3/3)

Theoretical problem:
max
G∈G

R+(G) s.t. R−(G) ≤ α, (1)

with R+(G) = E
[
G(X, X′) | Z = +1

]
and R−(G) = E

[
G(X, X′) | Z = −1

]
.

Empirical problem:
max
G∈G

R+n (G) s.t. R−n (G) ≤ α + Φ. (2)

withΦ > 0.

Why a tolerance parameterΦ ?
I Tolerate variations of R−n (G) around its expectation R−(G).
I Φwill depend on G’s complexity and n.

Let G∗ and Ĝn be respectively the solutions of eq. (1) and eq. (2).
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Illustration: pROCwith linear G
Setting:

G =

{
sA : (x, x′) 7→ 1

2

(
1+ x>Ax′

)
| ‖A‖2F ≤ 1

}
,

where ‖A‖2F =
∑

i<j a
2
ij.

Easy analytical solutions of eq. (2) !

class 1
class 2
class 3

(a) Simulated data with simple structure.
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(b) ROC curves for di�erent α’s. 9
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Universal bound
Theorem 1
Suppose that:
1. G is a "nice" family of functions,
2. P{Y = Y ′} ≥ κ > 0 "away from zero".

Introducing:

Φn,δ := Cδ,G · n−1/2,

we have that, w.p.≥ 1− δ, ∀n ≥ n0,

R+(Ĝn) ≥ R+(G∗)− Φn,δ,

R−(Ĝn) ≤ α + Φn,δ.

Φ

Φ

α

Confidence region 
for point of ROC 𝐺𝑛

ROC of 𝐺∗

Sketch of proof

I Show that: Uniform control over G of R+n − R+, R−n − R−

=⇒ bilateral control of the risks.

I Use results on U-statistics. 11



Fast rates (1/2)

Under a noise assumption (NA),
The regret in R+ is bounded by a higher power of nwith sameΦn,δ.

Introduce:
I the posterior probability η:

η(x, x′) = P{Z = +1 | (X, X′) = (x, x′)}.

I the value Q∗α of the (1− α)-quantile of η(X, X′) | Z = −1.

NA is inspired by [Mammen and Tsybakov, 1995] andmeans that:
For almost every x ∈ X , the CDF of η(x, X′) is smooth around Q∗α.

Some parameter a quantifies the smoothness.
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Fast rates (2/2)
Theorem 2
Suppose that assumptions of theorem 1 andNA are verified,
we have that, w.p.≥ 1− δ, ∀n ≥ n0,

R+(Ĝn) ≥ R+(G∗)− C0 · n−(2+a)/4,
R−(Ĝn) ≤ α + Φn,δ.

where C0 depends of δ, κ,Q∗α, a, c and G.
Remark: These fast rates are slower than fast classification rates.

Sketch of proof

I The noise hypothesis implies a control of the variance of a
linearization of the excess positive risk (epr) R+n (G)− R+n (G∗).

I Apply a concentration inequality using the variance of the
linearization of the epr.

I Di�erence between the epr and its linearization is negligible.
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Illustrating the fast rates
We can choose P to satisfy NAwith di�erent a’s:

0.0 0.5 1.0
x

0.0

0.5

1.0

1.5

2.0
µ

1
(x

)

0.000

0.025

0.050

0.075

0.100

0.125

a = 0.2

µ1(x)

class 1
class 2

0.0 0.5 1.0
x

0.5

1.0

1.5

0.000

0.025

0.050

0.075

0.100

0.125

P
n
(X
∈

b
in
|Y

=
i)

,
i
∈
{1
,2
}

a = 0.8

µ1(x)

class 1
class 2

And we can compute the generalization rates:
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Tractability of eq. (2)

In biometric applications, K is high.
=⇒ R−n is an average of too many pairs.
=⇒ We need to approximate R−n .

Example: LFW dataset:

n+ = 2 · 105, n− = 9 · 107.
We can:
1. Compute R−n (G)with less observations,
2. Use an average of G on B negative pairs, uniformly selected.

The 2nd proposition gives us an equivalent of theorem 1 with:

Φ = O(B−1/2) + O(n−1/2).

It su�ices to sample B = O(n) to have same order guarantees.
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Illustration: Scalability strategy
Illustrated on MMC algorithmwith subsampling of negative pairs,
see [Xing et al., 2002], and MNIST data. Results:
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Merci !
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