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Introduction



Biometric verification (1/2)

A biometric system uses:

» Two measurements X and X,
» Asimilarity S that quantifies the likeness of (X, X’), 5()},)(') _
> Athreshold t that separates positive and negative pairs.

Aim: S(X,X’) > tis a good indicator of Z = +1 with:

P +1 if (X, X’) from the same person,
"~ | =1 otherwise.

Two types of errors:

TPRs(t) := P{S(X,X") > t| Z = +1},
FPRs(t) := P{S(X,X') >t | Z = —1}.

The set {(FPRs(t), TPRs(t)) | t € R} is known as the ROC curve.



Biometric verification (2/2)
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Figure: Example of a ROC curve (Source: NIST FRVT reports.)

Pointwise ROC optimization (pROC):
Maximize TPRs.t. FPR < q,

with a some target, for example o = 1073,

Objective:
Procedure to solve pROC from data, and theoretical guarantees.



Related work

— guarantees for ERM for pROC for bipartite ranking.
> Bipartite ranking: Rank Xi, X5, ... by relevance,
» Similarity ranking: Rank (X, X2), (X1, X3), ... by similarity.

Their analysis does not generalize to similarity ranking.
— Ours requires results on U-statistics, see and

Instead of a constrained approach, asymmetric weighting of
positive and negative risks is common in metric learning.
— Theoretical guarantees exist, see

However, we have no indication on the asymmetry factor ~ that
guarantees FPR < a.



Our problem (1/3)
We introduce the following problem:

max RT(G)st.R™(G) < a, (1)

withRT(G) = E [G(X,X") | Z=+1] and R (G) = E [G(X,X") | Z= —1] .

Remark: When G(X, X") = I{S(X,X’) > t}, eq. (1) is pROC.

Our data D, follows a standard classification model, i.e.

Dn={(X,%),...,(Xn,Yn)},
is composed of ni.i.d copies of (X,Y) ~ PwhereY € {1,...,K}.

Given (X,Y) L (X', Y') ~ P, it follows that:

1 y=Y
z=1" ’
—1 Y£VY.



Our problem (2/3)

Theoretical problem:

max RT(G)st.R™(G) < a, (1)

withRT(G) =E [6(X,X") | Z=+1] and R (G) = E [6G(X,X) | Z= 1] .

We can estimate the quantities R™(G) and R~ (G) by:

RT(G ZG Xi, X)) - I{Y; = Vi1,
i<j
~ 1
Ry (6) 1= — > 6% X) - I{¥; # ¥},
gy

wheren, =3, I{Y;=VY;} =n(n-1)/2 —n_.

i<j

We can now derive an empirical problem!



Our problem (3/3)

Theoretical problem:

max RT(G)st.R™(G) < a, (1)

withRT(G) = E [G(X,X") | Z=+1] and R (G) = E [6G(X,X') | Z= 1] .

Empirical problem:

maxR (G)st. R, (G) <a+®. (2
Geg

with & > 0.

Why a tolerance parameter ¢ ?
» Tolerate variations of R;, (G) around its expectation R~ (G).
» & will depend on G’s complexity and n.

Let G* and G, be respectively the solutions of eq. (1) and eq. (2).



Illustration: pROC with linear G
Setting:

:
G = {sA (0 X) = 5 (1 +xTAx') | A2 < 1},
where ||A||2 = 3. 2.
F 1<J ~ij

Easy analytical solutions of eq. (2) !
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(a) Simulated data with simple structure. (b) ROC curves for different o’s.
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Generalization guarantees



ROC curve

Universal bound 1.0
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we have that, w.p. > 1 —0,Vn > no,

R*(Gn) 2 R*(G*) — ®ng,

R™(Gy) < a+ ®ps.
Sketch of proof

» Show that: Uniform controlover G of Rt — RT, R, — R~
— bilateral control of the risks.

» Use results on U-statistics. 1



Fast rates (1/2)

Under a noise assumption (NA),
The regretin R™ is bounded by a higher power of n with same &, 5.

Introduce:
> the posterior probability 7:

n(xx) = B{Z = 1] (X.X') = (x,.x)}.

» thevalue Q* of the (1 — «)-quantile of n(X, X') | Z = —1.

NA is inspired by and means that:
For almost every x € X, the CDF of n(x, X") is smooth around Q.

Some parameter a quantifies the smoothness.



Fast rates (2/2)

Theorem 2
Suppose that assumptions of theorem 1 and NA are verified,

we have that, w.p. > 1—9,Vn > ny,
R*(Gn) = R*(G") — Co - n™@+9)/4,
R_(én) S (0% + (Dn,(s-

where Co depends of §, k, Q},, a,cand G.
Remark: These fast rates are slower than fast classification rates.
Sketch of proof
» The noise hypothesis implies a control of the variance of a
linearization of the excess positive risk (epr) R/ (G) — R (G*).

» Apply a concentration inequality using the variance of the
linearization of the epr.

> Difference between the epr and its linearization is negligible.



Illustrating the fast rates
We can choose P to satisfy NA with different a’s:

a=02 a=0.8
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And we can compute the generalization rates:
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Scalability



Tractability of eq. (2)

In biometric applications, K is high.
— R, is an average of too many pairs.
—> We need to approximate R, .

Example: LFW dataset:
ny=2-10°, n_=9-10".

We can:
1. Compute R (G) with less observations,
2. Use an average of G on B negative pairs, uniformly selected.

The 2" proposition gives us an equivalent of theorem 1 with:
® = 0(B~%) + 0(n7"/?).

It suffices to sample B = O(n) to have same order guarantees.



Illustration: Scalability strategy
Illustrated on MMC algorithm with subsampling of negative pairs,
see [Xing et al., 2002], and MNIST data. Results:
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Subsampling negative pairs does not hinder learning.



Merci!

Come and see us at poster #74 !
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