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Distributional shi�
Sometimes, training data does not match testing data.

[Ganin et al., 2015]: generated numbers to classify SVHN numbers.

Train & test data contain di�erent ethnicities.
Here: RacialFaces [Wang et al., 2019] and LFW [Huang et al., 2007].
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Probabilistic setting

DefineZ as the input space.
e.g. in binary classif. Z = Rd×{−1,+1}

As well as a distribution P overZ ,
defined on a probability space (Ω,A,P).

Introduce the i.i.d. sample:

Dn = {Z1, . . . , Zn}
i.i.d.∼ P.

The empirical distributionwrites:

P̂n =
1
n

n∑
i=1

δZi ,

where δz is the Dirac distribution
(δz(A) = I{z ∈ A} for any A ⊂ Z).

HereZ = R×{−1,+1},
P(Z,+1) = P(Z,−1).

Here Z1 = (X1, Y1)
red: p.d.f. X1|Y1 = −1.
green: p.d.f. X1|Y1 = +1.

Empirical distribution
Yi = −1, Yi = +1.
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Empirical Risk Minimization (ERM)

Usual problems seeks tominimize an expected risk in θ ∈ Θ:

RP(θ) := EP[`(θ, Z)], (1)

w/ ` : Θ×Z → R+ is a loss function andEP the expectationw.r.t. P.

Empirical Risk Minimization (ERM) ([Devroye et al., 1996])
approximates the expected risk with the sampleDn:

R̂P(θ) :=
1
n

n∑
i=1

`(θ, Zi) = RP̂n(θ). (2)

The performance of minimizers of Eq. (2) for Eq. (1) can be
guaranteed from usual concentration inequalities.

What if the training (P′) and test (P) distributions di�er ?
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Contributions

Our work proposes:

· A general probabilistic setting for problems where train and test
distribution di�er.

· A concrete technique for several problems:
→ learning with di�erent class/strata probabilities,
→ PU learning,
→ predicting with censored samples,
with auxiliary information on the relation between train and test.

· Illustrative experiments of its e�ectiveness on ImageNet
([Russakovsky et al., 2014]).
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Weighted Empirical Risk Minimization

Introduce a sampleD′n = {Z′1, . . . , Z′n}
i.i.d.∼ P′ andw = (w1, . . . ,wn)

a weight vector. Then theweighted empirical risk is:

RP̃w,n(θ) :=
1
n

n∑
i=1

wi · `(θ, Zi),

and the empirical weighted distribution is P̃w,n := 1
n
∑n

i=1 wi · δZ′i .

If P� P′, letΦ(z) := (dP/dP′)(z) be the likelihood function.
Then the weightsw∗ such thatw∗i = Φ(Z′i) satisfy:

EP′
[
RP̃w∗,n

(θ)
]

= RP(θ),

i.e. the weighted risk is an unbiased estimator of the expected risk.
We denote the minimizer ofRP̃w∗,n

(θ) by θ̃∗n .
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Theoretical guarantees

Assume sup(θ,z)∈Θ×Z `(θ, z) ≤ L and supz∈Z Φ(z) ≤ M.

Theorem 1
With probability at least 1− δ, for any n ≥ 1,

RP(θ̃∗n)−min
θ∈Θ
RP(θ) ≤ 2M ·

(
E[R′n(F)] + L

√
2 log(1/δ)

n

)
.

Note: Under complexity assumptions (e.g. VC assumptions),
the quantity E[R′n(F)] is of order O(n−1/2).

Problems:
·Φ : Z → R+ is unknown in general.
· ifM is large, the bound is null.
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Di�erent proportion of target classes

LetZ = X × {1, . . . ,K}, thus Z1 = (X1, Y1)with Y1 a target class.
Then, with pk := P(X , k) and p′k := P′(X , k), we have:

Φ(z) = Φ((x, y)) =
1
n

K∑
k=1

pk
p′k
· I{y = k}.

Φ only depends on the pk’s and p′k’s.

The p′k’s can be estimated from the data Y ′1, . . . , Y ′n.
However, we assume the pk to be known (auxiliary information).

Assume that the p′k are away from zero, i.e. maxk p′k ≥ εwith ε > 0,
thenΦ is bounded and we have the usual learning rate O(n−1/2).
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Stratified data
We can reweight on any discrete attribute !
→We need to know the proportion of each strata in the test set.
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Other problems
Positive unlabeled (PU) learning
PU learning solves binary classif. with positive and unlabeled data.
ThenZ = X × {−1,+1}, thus Z1 = (X1, Y1).
Set p := P(X × {−1}) and q := P(X × {+1}).

Φ(x, y) =
p
q
I{y = +1}+

1
1− q

I{y = −1} − p
1− q

dF+

dF
(x) · I{y = −1}.

The quantity dF+/dF is removed by substituting samples.

Learning from censored data
Denote by (X,min(Y, C), I{Y ≤ C}) and (X′,min(Y ′, C′), I{Y ′ ≤ C})
the r.v. concerned with the distributions of P and P′. Then:

Φ(x, y, δ) =
I{Y ≤ C}

P{C′ ≥ y|X′ = x}
.
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The ImageNet dataset

ImageNet is based onWordNet ([Fellbaum, 1998]).
WordNet is a hierarchical database of english nouns (synsets).
We use the ImageNet dataset with high-level synsets as strata.

The train and test splits of ImageNet have same strata distribution.
We induce strata bias by removing data.
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Imbalanced data for ImageNet

We induce strata bias using a power law.

Introducing a strata bias parameter 0 ≤ γ ≤ 1, we set:

p′k = γ1−bK/2c/k · pk,

and remove instances of the train set to get right proportions p′k.
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Results

We optimize a so�max cross-entropy (SCE) with ADAM optimizer for
a linear model on the last convolutional layer of the ResNet50
network of [He et al., 2015].
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Limitations and future work

Limitations:
· the hypothesis P� P′.
→ relaxed in [Laforgue and Clémençon, 2019].
→ some works account for dom(P) ∩ dom(P′) = ∅with geometric
interpretations (e.g. optimal transport [Redko et al., 2016]).

· the limited nature of the auxiliary information.
→ small sample of the target dataset in [Sugiyama et al., 2008].

Future work:
Tackle learning with a small dataset that has the test distribution.
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Thank you !
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