Learning Fair Scoring Functions

Robin Vogel ${ }^{1,2}$ Aurélien Bellet ${ }^{3} \quad$ Stephan Clémençon 2
${ }^{1}$ IDEMIA, ${ }^{2}$ Télécom Paris, ${ }^{3}$ Inria

AISTATS 2021

Fairness for ranking/scoring

Lots of recent papers focus on fairness in classification.
Binary classification: $(X, Y) \sim P$ and $(X, Y) \in \mathcal{X} \times\{-1,1\}$, learn a classifier $g: \mathcal{X} \rightarrow\{-1,1\}$ from data $\left\{\left(X_{i}, Y_{i}\right)\right\}_{i=1}^{n} \stackrel{\text { i.i.d. }}{\sim} P$. Fairness: Sensitive information $Z \in\{0,1\}$, a Z_{i} for each $\left(X_{i}, Y_{i}\right)$.
e.g. gender, ethnicity, ...

Example of constraints: Parity in ...

- Error: $\mathbb{P}\{g(X) \neq Y \mid Z=0\}=\mathbb{P}\{g(X) \neq Y \mid Z=1\}$,
-FPR: $\mathbb{P}\{g(X)=1 \mid Z=0, Y=-1\}=\mathbb{P}\{g(X)=1 \mid Z=1, Y=-1\}$,
. TPR, ...

Fairness for ranking/scoring

Lots of recent papers focus on fairness in classification.
Binary classification: $(X, Y) \sim P$ and $(X, Y) \in \mathcal{X} \times\{-1,1\}$, learn a classifier $g: \mathcal{X} \rightarrow\{-1,1\}$ from data $\left\{\left(X_{i}, Y_{i}\right)\right\}_{i=1}^{n} \stackrel{\text { i.i.d. }}{\sim} P$.
Fairness: Sensitive information $Z \in\{0,1\}$, a Z_{i} for each $\left(X_{i}, Y_{i}\right)$.
e.g. gender, ethnicity, ...

Example of constraints: Parity in ...

$$
\begin{aligned}
& \cdot \operatorname{Error:} \mathbb{P}\{g(X) \neq Y \mid Z=0\}=\mathbb{P}\{g(X) \neq Y \mid Z=1\} \\
& \cdot \operatorname{FPR}: \mathbb{P}\{g(X)=1 \mid Z=0, Y=-1\}=\mathbb{P}\{g(X)=1 \mid Z=1, Y=-1\} \\
& \cdot \operatorname{TPR}, \ldots
\end{aligned}
$$

Fairness in scoring/ranking is a recent a research topic.
Scoring: $(X, Y) \sim P$ and $(X, Y) \in \mathcal{X} \times \mathcal{Y}$ with $\mathcal{Y}=\{-1,1\}$, learn a score $s: \mathcal{X} \rightarrow \mathbb{R}$ from data $\left\{\left(X_{i}, Y_{i}\right)\right\}_{i=1}^{n} \stackrel{i . i . d .}{\sim} P$.

Contributions in fairness for ranking

See r.h.s. table for the problem distributions.
e.g. $H_{s}^{(0)}=\mathbb{P}\{s(X) \leq t \mid Y=-1, Z=0\}$.

Group \times Class	$Y=-1$	$Y=+1$
$Z=0$	$\mathrm{H}_{5}{ }^{(0)}$	$\mathrm{G}^{(0)}$
$Z=1$	$\mathrm{H}_{5}{ }^{(1)}$	$\mathrm{G}_{\mathrm{s}}{ }^{(1)}$
$Z \in\{0,1\}$	H_{s}	G_{s}

Contributions in fairness for ranking

See r.h.s. table for the problem distributions.
e.g. $H_{s}^{(0)}=\mathbb{P}\{s(X) \leq t \mid Y=-1, Z=0\}$.

Group \times Class	$Y=-1$	$Y=+1$
$Z=0$	$\mathrm{Hs}^{(0)}$	$\mathrm{G}_{\mathrm{s}}{ }^{(0)}$
$Z=1$	$\mathrm{H}_{\mathrm{s}}{ }^{(1)}$	$\mathrm{G}_{\mathrm{s}}{ }^{(1)}$
$Z \in\{0,1\}$	H_{5}	G_{s}

The ROC curve represents dissimilarity between dist. h, g on \mathbb{R},

$$
\operatorname{ROC}_{h, g}: \alpha \in[0,1] \rightarrow 1-g \circ h^{-1}(1-\alpha) .
$$

The $\mathrm{AUC}_{h, g}$ is the area under the $\mathrm{ROC}_{h, g}$ curve .
Perf. measure: $\mathrm{ROC}_{H_{s}, G_{s}}$: the true positive rate (TPR) for a false positive rate (FPR) for the test $Y=+1$ with $s(X)>t$.

Contributions in fairness for ranking

See r.h.s. table for the problem distributions.
e.g. $H_{s}^{(0)}=\mathbb{P}\{s(X) \leq t \mid Y=-1, Z=0\}$.

Group \times Class	$Y=-1$	$Y=+1$
$Z=0$	$\mathrm{Hs}^{(0)}$	$\mathrm{G}_{\mathrm{s}}(0)$
$Z=1$	$\mathrm{H}_{\mathrm{s}}{ }^{1)}$	$\mathrm{G}_{\mathrm{s}}{ }^{(1)}$
$Z \in\{0,1\}$	$\mathrm{H}_{\text {s }}$	G_{s}

The ROC curve represents dissimilarity between dist. h, g on \mathbb{R},

$$
\operatorname{ROC}_{h, g}: \alpha \in[0,1] \rightarrow 1-g \circ h^{-1}(1-\alpha) .
$$

The $\mathrm{AUC}_{h, g}$ is the area under the $\mathrm{ROC}_{h, g}$ curve.
Perf. measure: $\mathrm{ROC}_{H_{s}, G_{s}}$: the true positive rate (TPR) for a false positive rate (FPR) for the test $Y=+1$ with $s(X)>t$.
Fairness measure: BNSP constraint $\mathrm{AUC}_{H_{s}, G_{s}^{(0)}}=\operatorname{AUC}_{H_{s}, G_{s}^{(1)}}$.

Contributions in fairness for ranking

See r.h.s. table for the problem distributions.
e.g. $H_{s}^{(0)}=\mathbb{P}\{s(X) \leq t \mid Y=-1, Z=0\}$.

Group \times Class	$Y=-1$	$Y=+1$
$Z=0$	$\mathrm{H}_{5}{ }^{(0)}$	$\mathrm{G}_{\mathrm{s}}{ }^{(0)}$
Z = 1	$\mathrm{H}_{\mathrm{s}}{ }^{(1)}$	$\mathrm{G}_{\mathrm{s}}{ }^{11}$
$Z \in\{0,1\}$	H_{s}	G_{s}

The ROC curve represents dissimilarity between dist. h, g on \mathbb{R},

$$
\operatorname{ROC}_{h, g}: \alpha \in[0,1] \rightarrow 1-g \circ h^{-1}(1-\alpha) .
$$

The $\mathrm{AUC}_{h, g}$ is the area under the $\mathrm{ROC}_{h, g}$ curve.
Perf. measure: $\mathrm{ROC}_{H_{s}, G_{s}}$: the true positive rate (TPR) for a false positive rate (FPR) for the test $Y=+1$ with $s(X)>t$.

Fairness measure: BNSP constraint $\mathrm{AUC}_{H_{s}, G_{s}^{(0)}}=\operatorname{AUC}_{H_{s}, G_{s}^{(1)}}$.

Our contributions:

- A general formulation for AUC -based fairness constraints,
- A new, restrictive type of constraint: ROC -based constraints,
- A gradient descent for learning fair scores.

Illustrative Example

The problem distributions:

Group \times Class	$Y=-1$	$Y=+1$
$\mathrm{Z}=0$	$\mathrm{Hs}^{(0)}$	$\mathrm{G}_{\mathrm{s}}{ }^{(0)}$
$\mathrm{Z}=1$	$\mathrm{H}_{\mathrm{s}}{ }^{(1)}$	$\mathrm{G}_{\mathrm{s}}{ }^{(1)}$
$Z \in\{0,1\}$	H_{5}	G_{s}

... represented:

Illustrative Example

The problem distributions:

Group \times Class	$\mathrm{Y}=-1$	$\mathrm{Y}=+1$
Z = 0	$\mathrm{Hs}^{(0)}$	$\mathrm{G}_{\mathrm{s}}{ }^{(0)}$
$\mathrm{Z}=1$	$\mathrm{Hs}^{(1)}$	$\mathrm{G}_{\mathrm{s}}{ }^{(1)}$
$Z \in\{0,1\}$	H_{5}	G_{5}

They satisfy an AUC constraint:

Illustrative Example

The problem distributions:

Group \times Class	$Y=-1$	$\mathrm{Y}=+1$
$Z=0$	$\mathrm{H}_{5}{ }^{(0)}$	$\mathrm{G}_{\mathrm{s}}{ }^{(0)}$
$\mathrm{Z}=1$	$\mathrm{H}_{\mathrm{s}}{ }^{1)}$	$\mathrm{G}_{\mathrm{s}}{ }^{(1)}$
$Z \in\{0,1\}$	H_{5}	G_{5}

They satisfy an AUC constraint:

... represented:

... but are unfair in some situations:

Practical Results

Adult, No constraint $\mathrm{AUC}=0.91$

Adult, AUC constraint $\mathrm{AUC}=0.89$

Adult, ROC constraint $\mathrm{AUC}=0.87$

Thank you !

Come and see our poster !

