Learning Fair Scoring Functions

Robin Vogel^{1,2} Aurélien Bellet³ Stephan Clémençon²

¹ IDEMIA, ² Télécom Paris, ³ Inria

AISTATS 2021

Fairness for ranking/scoring

Lots of recent papers focus on fairness in classification.

Binary classification: $(X, Y) \sim P$ and $(X, Y) \in \mathcal{X} \times \{-1, 1\}$, learn a classifier $g : \mathcal{X} \to \{-1, 1\}$ from data $\{(X_i, Y_i)\}_{i=1}^n \stackrel{i.i.d.}{\sim} P$. **Fairness:** Sensitive information $Z \in \{0, 1\}$, a Z_i for each (X_i, Y_i) . *e.g.* gender, ethnicity, ...

Example of constraints: Parity in ...

- $\cdot \operatorname{Error}: \mathbb{P}\{g(X) \neq Y \mid Z = 0\} = \mathbb{P}\{g(X) \neq Y \mid Z = 1\},\$
- **FPR:** $\mathbb{P}{g(X) = 1 | Z = 0, Y = -1} = \mathbb{P}{g(X) = 1 | Z = 1, Y = -1},$
- \cdot TPR, ...

Fairness for ranking/scoring

Lots of recent papers focus on fairness in classification.

Binary classification: $(X, Y) \sim P$ and $(X, Y) \in \mathcal{X} \times \{-1, 1\}$, learn a classifier $g : \mathcal{X} \to \{-1, 1\}$ from data $\{(X_i, Y_i)\}_{i=1}^n \stackrel{i.i.d.}{\sim} P$. **Fairness:** Sensitive information $Z \in \{0, 1\}$, a Z_i for each (X_i, Y_i) . *e.g.* gender, ethnicity, ...

Example of constraints: Parity in ...

- $\cdot \operatorname{Error}: \mathbb{P}\{g(X) \neq Y \mid Z = 0\} = \mathbb{P}\{g(X) \neq Y \mid Z = 1\},\$
- FPR: $\mathbb{P}{g(X) = 1 | Z = 0, Y = -1} = \mathbb{P}{g(X) = 1 | Z = 1, Y = -1},$ • TPR, ...

Fairness in scoring/ranking is a recent a research topic.

Scoring: $(X, Y) \sim P$ and $(X, Y) \in \mathcal{X} \times \mathcal{Y}$ with $\mathcal{Y} = \{-1, 1\}$, learn a score $s : \mathcal{X} \to \mathbb{R}$ from data $\{(X_i, Y_i)\}_{i=1}^n \stackrel{i.i.d.}{\sim} P$.

See	r.h.s.	table for	the pr	oblem	distrib	utions.
e.g.	$H_{s}^{(0)}$	$= \mathbb{P}\{s(X)\}$	$\leq t \mid$	Y = -	1, Z = 0	0}.

Group×Class	Y = -1	Y = +1
Z = 0	H _s ⁽⁰⁾	G _s ⁽⁰⁾
Z = 1	$H_{s}^{(1)}$	G ⁽¹⁾
$Z\in\!\{0,1\}$	Hs	Gs

Group×Class	Y = -1	Y = +1
Z = 0	H _s ⁽⁰⁾	G _s ⁽⁰⁾
Z = 1	$H_{s}^{(1)}$	G ⁽¹⁾
$Z \in \{0,1\}$	Hs	Gs

See *r.h.s.* table for the problem distributions. *e.g.* $H_s^{(0)} = \mathbb{P}\{s(X) \le t \mid Y = -1, Z = 0\}.$

The ROC **curve** represents dissimilarity between dist. h, g on \mathbb{R} ,

ROC_{*h*,*g*} :
$$\alpha \in [0, 1] \rightarrow 1 - g \circ h^{-1}(1 - \alpha)$$
.

The AUC $_{h,g}$ is the area under the ROC $_{h,g}$ curve .

Perf. measure: ROC $_{H_s,G_s}$: the true positive rate (TPR) for a false positive rate (FPR) for the test Y = +1 with s(X) > t.

Group×Class	Y = -1	Y = +1
Z = 0	H _s ⁽⁰⁾	G _s ⁽⁰⁾
Z = 1	$H_{s}^{(1)}$	G ⁽¹⁾
$Z \in \{0,1\}$	Hs	Gs

See *r.h.s.* table for the problem distributions. *e.g.* $H_s^{(0)} = \mathbb{P}\{s(X) \le t \mid Y = -1, Z = 0\}.$

The ROC **curve** represents dissimilarity between dist. h, g on \mathbb{R} ,

ROC_{*h*,*g*} :
$$\alpha \in [0, 1] \rightarrow 1 - g \circ h^{-1}(1 - \alpha)$$
.

The AUC $_{h,g}$ is the area under the ROC $_{h,g}$ curve .

Perf. measure: ROC $_{H_s,G_s}$: the true positive rate (TPR) for a false positive rate (FPR) for the test Y = +1 with s(X) > t.

Fairness measure: BNSP constraint $AUC_{H_s,G_s^{(0)}} = AUC_{H_s,G_s^{(1)}}$.

Group×Class	Y = -1	Y = +1
Z = 0	H _s ⁽⁰⁾	G _s ⁽⁰⁾
Z = 1	$H_{s}^{(1)}$	G ⁽¹⁾
$Z \in \{0,1\}$	Hs	Gs

See *r.h.s.* table for the problem distributions. *e.g.* $H_s^{(0)} = \mathbb{P}\{s(X) \le t \mid Y = -1, Z = 0\}.$

The ROC **curve** represents dissimilarity between dist. h, g on \mathbb{R} ,

ROC_{*h*,*g*} :
$$\alpha \in [0, 1] \rightarrow 1 - g \circ h^{-1}(1 - \alpha)$$
.

The AUC $_{h,g}$ is the area under the ROC $_{h,g}$ curve .

Perf. measure: ROC $_{H_s,G_s}$: the true positive rate (TPR) for a false positive rate (FPR) for the test Y = +1 with s(X) > t.

Fairness measure: BNSP constraint $AUC_{H_s,G_s^{(0)}} = AUC_{H_s,G_s^{(1)}}$

Our contributions:

- \cdot A general formulation for AUC -based fairness constraints,
- \cdot A new, restrictive type of **constraint**: ROC -based constraints,
- · A gradient descent for learning fair scores.

Illustrative Example

Group×Class	Y = -1	Y = +1
Z = 0	H ⁽⁰⁾	G ⁽⁰⁾
Z = 1	$H_{s}^{(1)}$	$G_s^{(1)}$
$Z \in \{0,1\}$	Hs	Gs

The problem distributions:

... represented:

Illustrative Example

Group×Class	Y = -1	Y = +1
Z = 0	H ⁽⁰⁾	G ⁽⁰⁾
Z = 1	$H_{s}^{(1)}$	$G_s^{(1)}$
$Z \in \{0,1\}$	Hs	Gs

The problem distributions:

They satisfy an AUC constraint:

... represented:

Illustrative Example

The	problem	n distrib	utions:

Group×Class	Y = -1	Y = +1
Z = 0	H _s ⁽⁰⁾	G ⁽⁰⁾
Z = 1	$H_{s}^{(1)}$	$G_s^{(1)}$
$Z\in\!\{0,1\}$	Hs	Gs

4

Practical Results

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

0.00

0.25

0.00

z = 1: man z = 0: woman

Adult, No constraint AUC = 0.91 $ROC_{H_{c}^{(1)}, G_{c}^{(0)}}$ $ROC_{H_{c}^{(0)}, G_{c}^{(1)}}$ 0.50 0.75 1.00 0.25 $ROC_{G_{\xi}^{(0)}, G_{\xi}^{(1)}}$

 $ROC_{H_{c}^{(0)}, H_{c}^{(1)}}$

0.50 0.75 1.00

Adult, AUC constraint AUC = 0.89

Adult, ROC constraint AUC = 0.87

Thank you !

Come and see our poster !